共查询到19条相似文献,搜索用时 54 毫秒
1.
岩石的剪切破坏是工程爆破中常见的破坏模式,因此对岩石的动态剪切强度的测定具有重要意义。而深部岩石的破坏则需考虑围压条件,但目前普遍是在较低围压条件下(<20 MPa)研究岩石的动态剪切特性。为研究更高围压条件下(>20 MPa)岩石的动态剪特性,基于ABAQUS有限元软件,采用Drucker-Prager(D-P)塑性模型,结合率相关性,对低围压条件下分离式霍普金森压杆动态冲剪实验进行模拟,并从力平衡、加载率、岩样的破碎特征和剪切强度方面与实验结果进行了对比分析,研究表明:基于ABAQUS的数值模拟方法能够重现冲剪实验现象;D-P模型能较好的反映岩石的剪切强度特性和破裂特征,与实验结果相符。以上结果验证了模拟方法以及模型参数的合理性和适用性。在此基础上,对更高围压下的砂岩的冲剪特性进行了预测性的模拟研究。结果显示:更高围压条件下,随着围压的增大,岩样的破裂裂纹减少;加载率相差不大的情况下,岩样的剪切强度随围压的增大而增大;围压一定的情况下,岩样的动态剪切强度随着加载率的增大而增大。 相似文献
2.
基于分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)装置对工程水泥基复合材料(engineered cementitious composite, ECC)在14.8~16.3 s^(-1),31.8~36.5 s^(-1),57.8~65.5 s^(-1),167.3~200.2 s^(-1)4个应变率范围下进行冲击压缩试验,探究ECC在不同应变率下的动态力学特性及耗能机制。试验表明:ECC的动态抗压强度和动态峰值应变呈现出显著的应变率增强效应,在低应变率下纤维掺量对ECC动态抗压强度和峰值应变的增加作用较强,在高应变率增强作用不明显;纤维掺量对ECC在不同应变率的应力应变曲线具有类似的影响,在低应变率下纤维掺量对ECC应力应变曲线形态的影响大于高应变率;ECC的耗能能力与破坏形态有关,在能耗比达到90%以上时,纤维掺量为2.00%和2.30%的ECC的完整度是基体材料的4倍,充分体现了ECC在抗爆加固领域的优势,为ECC在抗爆抗冲击领域的应用提供技术参考。 相似文献
3.
采用先驱体浸渍裂解法(即PIP法)制备出3种不同短切碳纤维(C_(sf))体积分数的圆柱形短切碳纤维增强陶瓷基复合材料(C_(sf)/SiC复合材料)试件,通过高温加热装置和自组装功能的霍普金森压杆装置对试件进行高温和动态荷载耦合作用下的冲击压缩试验,并通过扫描电子显微镜(SEM)观察C_(sf)/SiC复合材料断口形貌,对试件的破坏形态进行分析。试验结果表明,采用PIP法制备的C_(sf)/SiC复合材料试件中C_(sf)分布均匀,在外应力作用下C_(sf)/SiC复合材料试件发生破坏,碳纤维和碳纤维束与SiC基体脱粘被不断拔出。试件的抗压强度随C_(sf)体积含量的增加而呈现先增加后减小的变化趋势,C_(sf)体积含量为21%的试件抗压强度最高,为96.55 MPa。与常温相比,在高温压缩试验中随着复合材料试件平均温度的升高,C_(sf)/SiC复合材料试件破碎后的块度越来越大,整体性越来越好,当温度达到300℃时,C_(sf)体积含量对C_(sf)/SiC复合材料试件抗压强度的影响较小。 相似文献
4.
为探究不同驱动气压(0.3~0.5 MPa)和试样长度(15~50 mm)下煤岩能量演化及分形特征,利用Φ50 mm分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)系统进行了动态压缩试验,明确了两种方式下能量演化参数随应变率的变化规律,基于分形理论探讨了破碎试样的分形特征,并揭示了不同应变率下煤岩破碎与能量演化的内在联系。结果表明:应变率随驱动气压升高呈线性增加,随试样长度增加呈幂函数降低;不同驱动气压和试样长度下的破碎耗能和破碎耗能密度随应变率升高分别呈指数和线性形式增加,且推断存在某一应变率,使两种方式破碎耗能密度的率敏感性趋于一致;气压改变和试样长度改变下的平均粒径随应变率升高均呈幂函数形式降低,而分形维数分别呈线性和指数形式增加;试验过程中随着应变率增加,试样破碎程度加剧,分形维数增大,且作用方式作为影响分形维数的重要因素,对结果起到了关键作用。研究结果可为采场合理布置施工参数提供一定参照。 相似文献
5.
围压下岩石的冲击力学行为及动态统计损伤本构模型研究 总被引:1,自引:0,他引:1
采用改进后具有主动围压加载装置的f100mm 分离式Hopkinson压杆(SHPB)试验装置,研究了斜长角闪岩在不同围压等级(0MPa~6MPa)和不同应变率(50s-1~170s-1)下的冲击压缩力学性能。试验结果表明:在相同围压下,斜长角闪岩的动态抗压强度随应变率的增加而近似线性增加,动态增长因子与应变率的对数呈近似线性关系,体现了显著的应变率相关性;在同等级应变率范围内,随着围压的增加,岩石的增强效果逐渐增强,显现出较强的围压效应。采用组合建模的方法,将统计损伤模型和粘弹性模型相结合,建立了基于Weibull 分布的动态损伤本构模型。验证发现,修正后的模型曲线和试验曲线吻合较好,表明所构建本构模型是合理的,可为进一步研究和工程应用提供一定的参考。 相似文献
6.
利用具有主动围压加载装置的直径为100 mm分离式Hopkinson压杆(SHPB)试验装置和薄圆形紫铜片作为波形整形器,研究了斜长角闪岩在不同围压等级(0~6 MPa)、不同应变速率(50~170 s-1)下的动态力学性能,并对试验有效性进行了分析。试验结果表明:斜长角闪岩的动态强度增长因子与应变率的对数呈近似线性关系,强度与比能量吸收随应变率的增加而近似线性增加,体现了显著的应变率相关性;在同等级应变率范围内,随着围压的增加,岩石的增强效果与增韧效果逐渐增强;同时发现,在围压作用下,岩石的破坏由拉伸破坏向压剪破坏逐渐过渡和发展。SHPB试验中,近似恒应变率加载时间比例约为69.5 %,能够较好地满足应力均匀分布及近似恒应变率加载要求,表明SHPB试验的有效性和结果的可靠性 相似文献
7.
8.
《中国测试》2016,(10):63-67
水下爆炸或者陆地触雷爆炸时,人下肢骨骼极易损伤,为研究冲击载荷作用下股骨、胫骨的动态力学性能以及它们不同部位动态力学性能的分布规律,利用分离式Hopkinson压杆(SHPB)分别对股骨、胫骨的不同部位进行不同应变率下的动态压缩实验。分别得到股骨和胫骨不同部位在不同应变率下的压缩变形情况以及应力应变曲线,进一步得到它们在冲击压缩下的抗压强度。研究表明:股骨,胫骨都对应变率具有较大的依赖性;在冲击压缩条件下,股骨和胫骨动态力学性能都表现出两端较弱,中部较强的分布规律,该研究成果对以后提高人体的抗冲击能力,加强人体冲击伤的救治与防护具有一定参考价值。 相似文献
9.
为研究轻质泡沫混凝土的冲击动力学性能,结合半导体应变测试技术和入射脉冲整形技术对铝质分离式Hopkinson压杆(SHPB)装置进行改进,解决了泡沫混凝土类低阻抗多孔介质材料透射信号难采集问题,满足了加载过程中试件内部应力均匀性要求。通过调整冲击气压对密度为220 kg/m3轻质泡沫混凝土实施了不同撞击杆速度下的单轴冲击压缩试验。试验结果表明,泡沫混凝土试件在冲击荷载作用下依次经历线弹性阶段、屈服阶段和孔壁破坏3个阶段,且泡沫混凝土试件平均应变率与撞击杆速度表现出较强的线性相关性。 相似文献
10.
全轻纤维混凝土的SHPB冲击强度与耗能效应 总被引:1,自引:0,他引:1
以LC30全轻页岩陶粒混凝土为基准,对聚丙烯纤维、钢纤维和多壁碳纳米管不同组合掺入方式,分别进行了静力和分离式Hopkinson压杆(SHPB)冲击试验,利用HJC模型和LS-DYNA软件对素混凝土和钢纤维混凝土的动态应力-应变曲线进行了数值模拟。结果表明:全轻纤维混凝土不仅具有应变率效应和临界值,而且还具有强度效应和能量效应;并随应变率提高,其动态峰值应力和峰值应变、总能耗随之增大,且动态应力增长系数与应变率的对数具有显著相关性,但纤维掺入方式具有明显的差异性。其中,单掺时以聚丙烯纤维为最好,双掺时差异不大,三掺时为最好。数值模拟与试验曲线相近,但峰值应力较大和下降段差异较大,表明HJC模型对全轻混凝土及其纤维混凝土具有一定的局限性。 相似文献
11.
运用一维应力波理论,对分离式Hopkinson压杆(SHPB)试验中弹性应力波的传播过程进行了分析,得到了试件应力分布相关计算公式,讨论了试件应力平衡时间的影响因素和变化规律。以变截面杆SHPB试验装置对煤矿岩石试件加载为例,计算分析了3种岩石试件在光滑的试验入射波和与其升时相同的理论梯形入射波加载情况下试件应力均匀性和应力平衡时间。发现采用变截面入射杆进行加载,能够实现岩石试件在应力峰值之前达到应力平衡,满足应力均匀性假定要求的有效条件。结果表明,采用理论梯形入射波可以近似代替与其升时相同的试验入射波,预估岩石试件应力均匀性和应力平衡时间,对类似脆性材料的SHPB试验设计具有一定的参考价值。 相似文献
12.
13.
14.
摘 要:利用分离式Hopkinson压杆系统,采用铅片作为整形器,分别对常温下、400℃、600℃及800℃高温过火后的RPC试样进行单轴冲击压缩实验。研究高温后钢纤维对RPC材料动态力学性能及吸能特性的影响规律。结果表明,高温过火前后钢纤维对RPC均有增强和增韧的作用。高温后因RPC塑性流动性能的增强,导致钢纤维的增韧作用减弱。RPC动态抗压强度高温后损失的速率高于韧性指标。分析RPC材料冲击压缩过程的能量机制,发现钢纤维提高了RPC的能量吸收率,因此能量吸收能力也得到了增强。利用SEM扫描电镜,从RPC材料微观结构变化的角度分析了其高温后宏观力学性能降低的原因。 相似文献
15.
This work aimed to investigate the strain-rate effect (0.001–3000 s−1) on compressive properties of the highly cross-linked epoxy and the epoxy sample filled with 10 wt% sol-gel-formed silica nanoparticles. As the strain rate increased, the compressive modulus and transition strength of both samples went up distinctly, the strain at break and ultimate strength decreased more or less, while the strain energy at fracture nearly did not change. Adding the sol-gel-formed silica nanoparticles can improve effectively the compressive modulus, transition strength as well as strain energy at fracture of the epoxy polymer owing to their homogeneous dispersion in epoxy matrix. 相似文献
16.
为研究混凝土材料的动态性能,利用直径φ100 mm的SHPB(Split Hopkinson Pressure Bar)装置对骨料尺寸为15 mm~20 mm的混凝土材料试样进行了应变率范围30s(-1)~180s(-1)的动态压缩试验,并借助高速摄影装置获得了试样的变形与破坏过程,结果表明:在动态压缩强度附近应力区,材料表面先出现一条沿试样轴向的可见宏观裂纹,而多条主裂纹的形成与扩展才导致材料的最终破坏;建立了改进的ZWT模型,模型预测结果与试验结果较吻合. 相似文献
17.
采用带围压装置的φ100mm霍普金森压杆系统,对砂岩试样进行了单轴冲击和4MPa、20MPa围压条件下的循环冲击试验,并对每次冲击前后的砂岩试样进行超声纵波检测,分析了砂岩在冲击荷载循环作用下的应力、应变特征,定义了砂岩试样的屈服-弹性比用以描述围压下试样应力应变曲线的弹塑性特征,采用纵波波速定义了砂岩试样的冲击损伤并分析了循环冲击试验中砂岩试样纵波波速和应力应变之间的关系。分析发现:在围压作用下,应力-应变曲线呈现典型的弹塑性特征。随着冲击荷载循环作用次数的增加,砂岩试样屈服应力、峰值应力降低,屈服应变、峰值应变增加。随着循环冲击作用次数的增加,砂岩试样的应力、应变特征与纵波波速之间存在良好的相关关系。较低围压状态下累计损伤度明显高于较高围压下砂岩的累积损伤,砂岩循环冲击损伤具有明显的围压效应。研究结果对地下工程的建设和防护有一定的指导意义。 相似文献
18.
In order to investigate the dynamic compression behavior of Ultra-high performance cement based composites (UHPCC) used in defense works, UHPCC with 200 MPa compressive strength is prepared by replacing a large quantity of cement by industrial waste residues such as silica fume, fly ash and slag; and substituting ground fine quartz sand (≤600 um in diameter) with natural sand (2.5 mm in diameter). Split Hopkinson pressure bar (SHPB) is performed on UHPCC with different fiber volume fraction to investigate the dynamic compression behavior. Results show that impact resistance of UHPCC is improved with an increase of fiber volume fraction. The dynamic compressive strength of UHPCC is also increased with an increase of strain rate. In addition, the finite element method (LS-DYNA) is employed to simulate the whole impact process of UHPCC. Numerical simulations demonstrate that the Johnson_Holmquist_Concrete material constitutive model can be used for the dynamic compression of concrete. The numerical values are in good agreement with experimental results. 相似文献