首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kim H  Cho J 《Nano letters》2008,8(11):3688-3691
Mesoporous Si@carbon core-shell nanowires with a diameter of approximately 6.5 nm were prepared for a lithium battery anode material using a SBA-15 template. As-synthesized nanowires demonstrated excellent first charge capacity of 3163 mA h/g with a Coulombic efficiency of 86% at a rate of 0.2 C (600 mA/g) between 1.5 and 0 V in coin-type half-cells. Moreover, the capacity retention after 80 cycles was 87% and the rate capability at 2 C (6000 mA/g) was 78% the capacity at 0.2 C.  相似文献   

2.
Chan CK  Zhang XF  Cui Y 《Nano letters》2008,8(1):307-309
Ge nanowire electrodes fabricated by using vapor-liquid-solid growth on metallic current collector substrates were found to have good performance during cycling with Li. An initial discharge capacity of 1141 mA.h/g was found to be stable over 20 cycles at the C/20 rate. High power rates were also observed up to 2C with Coulombic efficiency > 99%. Structural characterization revealed that the Ge nanowires remain intact and connected to the current collector after cycling. Nanowires connected directly to the current collector have facile strain relaxation and material durability, short Li diffusion distances, and good electronic conduction. Thus, Ge nanowire anodes are promising candidates for the development of high-energy-density lithium batteries.  相似文献   

3.
A MoS2@C nanotube composite is prepared through a facile hydrothermal method, in which the MoS2 nanotube and amorphous carbon are generated synchronically. When evaluated as an anode material for lithium ion batteries (LIB), the MoS2@C nanotube manifests an enhanced capacity of 1327 mA h g?1 at 0.1 C with high initial Coulombic efficiency (ICE) of 92% and with capacity retention of 1058.4 mA h g?1 (90% initial capacity retention) after 300 cycles at a rate of 0.5 C. A superior rate capacity of 850 mA h g?1 at 5 C is also obtained. As for sodium ion batteries, a specific capacity of 480 mA h g?1 at 0.5 C is achieved after 200 cycles. The synchronically formed carbon and stable hollow structure lead to the long cycle stability, high ICE, and superior rate capability. The good electrochemical behavior of MoS2@C nanotube composite suggests its potential application in high‐energy LIB.  相似文献   

4.
锂在集流体上的不均匀沉积将导致严重的枝晶生长和体积膨胀等问题,传统的商业化泡沫铜集流体由于具有较大的体积和质量会降低电池的能量密度.本文通过简单的电沉积方法制备了体积小、重量轻,具有亲锂性的3D Cu@Sn纳米锥集流体.从成核与沉积的角度出发,纳米锥结构与亲锂的锡纳米颗粒的协同作用促进了锂的均匀沉积,可有效地抑制锂枝晶的生长.组装的半电池在1 mA cm-2下经过100次循环后,库仑效率高达97.6%,锂对称电池在1 mA cm-2下可以稳定循环600 h.将沉积金属锂后的Cu@Sn/Li复合负极与LiFePO4组装的液态全电池在1 C倍率下, 550个循环之后,容量保持率为95.1%.此外, Cu@Sn纳米锥集流体在固态电池Li/Cu@Sn|PVDF–HFP–5 wt%Si O2|LFP中也表现出优异的电化学性能,在1 C倍率下, 500个循环之后,放电容量未发生衰减.  相似文献   

5.
Hard carbon is regarded as a promising anode material for sodium‐ion batteries (SIBs). However, it usually suffers from the issues of low initial Coulombic efficiency (ICE) and poor rate performance, severely hindering its practical application. Herein, a flexible, self‐supporting, and scalable hard carbon paper (HCP) derived from scalable and renewable tissue is rationally designed and prepared as practical additive‐free anode for room/low‐temperature SIBs with high ICE. In ether electrolyte, such HCP achieves an ICE of up to 91.2% with superior high‐rate capability, ultralong cycle life (e.g., 93% capacity retention over 1000 cycles at 200 mA g?1) and outstanding low‐temperature performance. Working mechanism analyses reveal that the plateau region is the rate‐determining step for HCP with a lower electrochemical reaction kinetics, which can be significantly improved in ether electrolyte.  相似文献   

6.
夏文明  唐仁衡  王辉  王英  肖方明  朱敏  孙泰 《材料导报》2017,31(10):11-15, 36
以SiO和蔗糖为原料,SiO经高温歧化反应处理后,通过机械球磨、喷雾干燥、高温热解工艺制备出具有优异电化学性能的锂离子电池SiO/C负极材料。经XRD、FTIR、XPS、SEM、TEM结构分析表明,歧化反应处理的片状SiO包含非晶态SiO和纳米晶相Si、SiO_2,蔗糖热解形成的无定形碳包覆在细片状SiO的表面,组成球形SiO/C颗粒。电化学测试结果表明,预歧化处理的SiO/C复合材料的首次放电容量为1 314.6mAh/g,首次库伦效率达到71%;100周循环后的放电容量为851.2mAh/g,容量保持率达到78.5%,循环稳定性远高于未经歧化处理的SiO/C复合材料。电化学性能的提高归因于SiO预歧化反应及热解碳包覆。  相似文献   

7.
Luo W  Xie Y  Wu C  Zheng F 《Nanotechnology》2008,19(7):075602
Well-defined spherical CoS(2)@carbon core-shell nanoparticles, with an average diameter of 40?nm and thin graphite shell of 4?nm, were synthesized by the one-pot method in the presence of NaN(3) in supercritical CS(2) at 600?°C using cobaltocene as the cobalt source. The obtained product was characterized by XRD, Raman, FESEM, TEM and HRTEM and the possible formation mechanism was proposed here. Due to the good electronic conductivity and buffering matrix effect of graphitic carbon shells, the CoS(2)@carbon core-shell nanocomposite exhibited highly reversible capacity, good cycle performance and high Coulombic efficiency in lithium ion storage and retrieval, which makes it promising as an attractive anode material candidate for lithium ion batteries.  相似文献   

8.
在对氧化亚硅(SiO)材料进行表面碳包覆和添加导电材料的基础上,掺杂少量纳米Si进一步提高其首次充放电容量和首次库仑效率。采用XRD、SEM、TEM、Raman、FTIR分析材料的物相结构和微观形貌,通过恒流充放电测试仪分析复合材料的电化学性能。结果显示,纳米Si质量为SiOx质量10%的复合材料(SiOx-Si@C@碳纳米管(CNTs)-10)的首次充放电容量分别为1 348.1 mA?h/g和1 874.4 mA?h/g,首次库仑效率为71.9%,循环100周后材料的可逆容量为1 116.2 mA?h/g,容量保持率为82.8%;以不同电流密度充放电,其放电容量远远高于没有纳米Si掺杂的材料。SiOx-Si@C@CNTs复合材料具有较高的首次库伦效率、较好的循环性能和倍率性能。   相似文献   

9.
We examine the impact of shell content and the associated hole confinement on carrier transport in Ge-Si(x)Ge(1-x) core-shell nanowires (NWs). Using NWs with different Si(x)Ge(1-x) shell compositions (x = 0.5 and 0.7), we fabricate NW field-effect transistors (FETs) with highly doped source/drain and examine their characteristics dependence on shell content. The results demonstrate a 2-fold higher mobility at room temperature, and a 3-fold higher mobility at 77K in the NW FETs with higher (x = 0.7) Si shell content by comparison to those with lower (x = 0.5) Si shell content. Moreover, the carrier mobility shows a stronger temperature dependence in Ge-Si(x)Ge(1-x) core-shell NWs with high Si content, indicating a reduced charge impurity scattering. The results establish that carrier confinement plays a key role in realizing high mobility core-shell NW FETs.  相似文献   

10.
X Chen  X Li  F Ding  W Xu  J Xiao  Y Cao  P Meduri  J Liu  GL Graff  JG Zhang 《Nano letters》2012,12(8):4124-4130
A cost-effective and scalable method is developed to prepare a core-shell structured Si/B(4)C composite with graphite coating with high efficiency, exceptional rate performance, and long-term stability. In this material, conductive B(4)C with a high Mohs hardness serves not only as micro/nano-millers in the ball-milling process to break down micron-sized Si but also as the conductive rigid skeleton to support the in situ formed sub-10 nm Si particles to alleviate the volume expansion during charge/discharge. The Si/B(4)C composite is coated with a few graphitic layers to further improve the conductivity and stability of the composite. The Si/B(4)C/graphite (SBG) composite anode shows excellent cyclability with a specific capacity of ~822 mAh·g(-1) (based on the weight of the entire electrode, including binder and conductive carbon) and ~94% capacity retention over 100 cycles at 0.3 C rate. This new structure has the potential to provide adequate storage capacity and stability for practical applications and a good opportunity for large-scale manufacturing using commercially available materials and technologies.  相似文献   

11.
Ti-A-C-Ag (A is Si, Ge or Sn) nanocomposite coatings have been deposited by dc magnetron sputtering in an ultra high vacuum chamber. Electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and x-ray diffraction show that all coatings contain nanocrystalline TiC and Ag grains in a matrix of mainly amorphous C. A C/Ti ratio above unity yields a homogenous distribution of Ag with a reduced grain size. From a chemical point of view, the addition of Ge and Sn to the Ti-C-Ag system should increase the conductivity of the coatings since the formation of more metallic phases than Si. We demonstrate that Si can be replaced with Ge and Sn and still yield a homogeneous distribution of Ag. The incorporation of Ge and Sn to the Ti-C-Ag system results in elemental precipitation and intermetallic phases, respectively. This gives improved electrical properties compared to Ti-Si-C-Ag coatings, and a contact resistance at loads of ~ 1 N against an Au probe (radius of 0.7 mm) that is comparable to that of Ag.  相似文献   

12.
系统研究了LaMgNi3.7M0.3(M=Ni、Al、Mn、Co、Sn、Cu)合金的组织结构和电化学性能。XRD和电子探针显微分析(EPMA)结果表明:该系列合金主相均为LaMgNi4相,其中含Mn、Cu和Co元素在LaMgNia合金相中有一定的固溶度,LaMgNi3.7Sn0.3合金中的Sn元素主要以LaNiSn相析出;XRD全谱拟合分析表明:LaMgNi3.7Al0.3中Al元素主要占据在LaNi5相的3g位置。合会化元素在LaMgNi4相中的固溶度从大到小的顺序是Mn〉Cu〉Co〉Al〉Sn。电化学实验表明,该系列合金经1~3次循环即可活化,最大放电容量由245.2mAh/g(M=Sn)变化至293.2mAh/g(M=Co),但合金电极的循环稳定性均较差。合金电极的高倍率放电性能(HRD900%)从大到小依次为Al〉Sn〉Cu〉Mn〉Ni〉Co,其中氢原子在合金中的扩散时合金电极的高倍率放电性能起主要作用。  相似文献   

13.
While manganese-based cathodes have been intensively studied for zinc-ion batteries (ZIBs),the limited rate capability and cycle life have always been a difficult problem to be solved.Here,we report a mixed valent manganese oxide (MnOx) cathode with superior electrochemical performance,which exhibits a high specific capacity of 450 mA h/g at 0.2 C and a satisfactory specific capacity of 158.3 mA h/g at a high rate of 5 C.The mixed cathode system reduces the charge transfer resistance,and show good surface stability and adsorption properties,so it is beneficial for the storage of Zn2+.Meanwhile,coaxial fiber ZIBs (CFZIBs) with splendid flexibility are assembled utilizing the elaborately prepared cathode material.The CFZIBs achieve a reversible capacity of 255.8 mA h/g and the capacity retention rate is as high as 80 % after 1000 bending deformations.This study provides new opportunities for designing ZIBs with high performance and high flexibility.  相似文献   

14.
在600℃~1100℃对聚偏二氯乙烯(PVDC)树脂仅进行炭化处理,制备了一系列PVDC基活性炭.由TG、XRD和N_2吸附等温线(77 K)分别测定了PVDC基炭经历的热解过程与其晶型、比表面积和孔结构;采用循环伏安、交流阻抗和恒电流充放电考察了它们在质量分数30%的 KOH水溶液中的电容特性.结果表明:PVDC基炭属于无定形碳,其大的比表面积(874.5m~2/g~969.2m~2/g)和丰富的微孔在固相炭化过程中形成;PVDC基炭具有适于双电层形成的优异孔径分布、高的质量比电容和面积比电容;900℃炭化的PVDC基炭具有最高的比电容值和良好的功率特性,50mA/g电流密度时的放电比电容达256.9F/g,5000mA/g电流密度时的放电比电容保持率达76.5%;提高炭化温度可提高PVDC基炭的电导率,降低电解质离子在孔内的扩散阻抗,改善双电层电容器的功率性能.  相似文献   

15.
采用球磨-热解工艺制备了Si/C复合负极材料。研究了球磨时间对Si/C复合负极材料结构和电化学性能的影响,并分析了电极的失效机理。研究结果表明,通过球磨可以将纳米硅颗粒均匀分散于石墨基体材料表面,同时,葡萄糖热解后形成的无定形碳使两者紧密结合。球磨3h合成的材料具有最优的电化学性能。以100mA/g的电流密度放电,首次放电容量达到1340mAh/g,首次充放电效率为75.6%,循环50次后,容量保持率为34.2%。  相似文献   

16.
用电弧蒸发法和固相硫化法制备核壳结构的碳约束NiS2纳米材料(NiS2@C)。用X射线衍射(XRD)、透射电镜(TEM)和Raman等手段对其表征的结果表明,外部碳层有较多的缺陷,厚度为4 nm,NiS2的粒径为28 nm。作为Na-S电池正极材料的电化学性能:在电流密度为100 mA·g-1条件下NiS2@C正极材料4次循环后库伦效率保持在90%以上,循环500次后仍有106.8 mAh·g-1的可逆比容量,具有较高的循环稳定性。电化学阻抗分析结果表明,NiS2@C外部碳层的良好电子导电性和优异的结构稳定性加快了电极反应并维持着界面离子迁移的动力学平衡。  相似文献   

17.
Sn基材料是目前高容量锂离子电池电极材料研究的热点,但循环性能较差阻碍了其大规模应用。以氧化石墨烯为载体,通过化学还原法在载体表面成功均匀负载<10 nm的Sn量子点,合成Sn量子点/石墨烯(SnQds/rGO)复合电极材料。结果表明,Sn质量分数为90wt%的SnQds/rGO复合材料具有良好的综合电化学性能,首次放电容量和库伦效率分别为939 mAh/g和66.6%,经过200次循环后容量可达621 mAh/g,容量保持率为66.1%。小尺寸的Sn量子点与石墨烯复合能够增强电极材料的结构稳定性和降低阻抗,改善电极材料的循环性能和倍率性能,但会导致首次库伦效率有所降低。   相似文献   

18.
Thermal stability of novel Pd/Sn and Pd/Sn/Au Ohmic contacts to n-GaAs has been investigated and compared to the non-alloyed Pd/Ge and alloyed Au–Ge/Ni metallizations. Metallization samples are furnace annealed at various temperatures and systematically characterized utilizing Scanning Electron Microscopy (SEM) and current–voltage (IV) measurements. Contact resistivities, ρc, of the proposed metallization are measured using a conventional Transmission Line Model (cTLM) method. The Pd/Sn Ohmic contacts display superior thermal stability at 410°C when compared to the Pd/Ge contacts. After annealing at 410°C for 4 h, ρc of the Pd(50 nm)/Sn(125 nm) metallization remains in the low 10−5 Ω cm2 range, whereas ρc values increase to 10−4 Ω cm2 for the Pd(50 nm)/Ge(126 nm) contacts. At 410°C, the Pd/Sn/Au metallizations also display better thermal stability than that of non-alloyed Pd/Ge and alloyed Au–Ge/Ni metallizations. The long-term stability at 300°C of the Pd/Sn and Pd/Sn/Au Ohmic contacts is also reported.  相似文献   

19.
Hard carbon is generally accepted as the choice of anode material for sodium-ion batteries. However, integrating high capacity, high initial Coulombic efficiency (ICE), and good durability in hard carbon materials remains challenging. Herein, N-doped hard carbon microspheres (NHCMs) with abundant Na+ adsorption sites and tunable interlayer distance are constructed based on the amine–aldehyde condensation reaction using m-phenylenediamine and formaldehyde as the precursors. The optimized NHCM-1400 with a considerable N content (4.64%) demonstrates a high ICE (87%), high reversible capacity with ideal durability (399 mAh g−1 at 30 mA g−1 and 98.5% retention over 120 cycles), and decent rate capability (297 mAh g−1 at 2000 mA g−1). In situ characterizations elucidate the adsorption–intercalation-filling sodium storage mechanism of NHCMs. Theoretical calculation reveals that the N-doping decreases the Na+ adsorption energy on hard carbon.  相似文献   

20.
Rechargeable sodium‐ion batteries are proposed as the most appropriate alternative to lithium batteries due to the fast consumption of the limited lithium resources. Due to their improved safety, polyanion framework compounds have recently gained attention as potential candidates. With the earth‐abundant element Fe being the redox center, the uniform carbon‐coated Na3.32Fe2.34(P2O7)2/C composite represents a promising alternative for sodium‐ion batteries. The electrochemical results show that the as‐prepared Na3.32Fe2.34(P2O7)2/C composite can deliver capacity of ≈100 mA h g?1 at 0.1 C (1 C = 120 mA g?1), with capacity retention of 92.3% at 0.5 C after 300 cycles. After adding fluoroethylene carbonate additive to the electrolyte, 89.6% of the initial capacity is maintained, even after 1100 cycles at 5 C. The electrochemical mechanism is systematically investigated via both in situ synchrotron X‐ray diffraction and density functional theory calculations. The results show that the sodiation and desodiation are single‐phase‐transition processes with two 1D sodium paths, which facilitates fast ionic diffusion. A small volume change, nearly 100% first‐cycle Coulombic efficiency, and a pseudocapacitance contribution are also demonstrated. This research indicates that this new compound could be a potential competitor for other iron‐based cathode electrodes for application in large‐scale Na rechargeable batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号