首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to characterize the relationship between Indoor Air Quality (IAQ) and ventilation in French classrooms. Various parameters were measured over one school week, including volatile organic compounds, aldehydes, particulate matter (PM2.5 mass concentration and number concentration), carbon dioxide (CO2), air temperature, and relative humidity in 51 classrooms at 17 schools. The ventilation was characterized by several indicators, such as the air exchange rate, ventilation rate (VR), and air stuffiness index (ICONE), that are linked to indoor CO2 concentration. The influences of the season (heating or non‐heating), type of school (nursery or elementary), and ventilation on the IAQ were studied. Based on the minimum value of 4.2 l/s per person required by the French legislation for mechanically ventilated classrooms, 91% of the classrooms had insufficient ventilation. The VR was significantly higher in mechanically ventilated classrooms compared with naturally ventilated rooms. The correlations between IAQ and ventilation vary according to the location of the primary source of each pollutant (outdoor vs. indoor), and for an indoor source, whether it is associated with occupant activity or continuous emission.  相似文献   

2.
Sekhar SC  Tham KW  Cheong KW 《Indoor air》2003,13(4):315-331
An integrated indoor air quality (IAQ)-energy audit methodology has been developed in this study in Singapore, which provides a rigorous and systematic method of obtaining the status-quo assessment of an 'IAQ signature' in a building. The methodology entails a multi-disciplinary model in obtaining measured data pertaining to different dimensions within the built environment such as the physical, chemical, biological, ventilation, and occupant response characteristics. This paper describes the audit methodology and presents the findings from five air-conditioned office buildings in Singapore. The research has also led to the development of an indoor pollutant standard index (IPSI), which is discussed in this paper. Other performance indicators such as, the ventilation index and the energy index as well as the building symptom index (BSI) are also presented and discussed in the context of an integrated approach to IAQ and energy. Several correlation attempts were made on the various symptoms, indoor air acceptability, thermal comfort, BSI and IPSI, and while BSI values are found to correlate among them as well as with IAQ and THERMAL COMFORT acceptability, no such correlation was observed between BSI and IPSI. This would suggest that the occupants' perception of symptoms experienced as well as environmental acceptability is quite distinct from IAQ acceptability determined from empirical measurements of indoor pollutants, which reinforces the complex nature of IAQ issues.  相似文献   

3.
Yu J  Ouyang Q  Zhu Y  Shen H  Cao G  Cui W 《Indoor air》2012,22(2):110-118
It has been reported previously that people who are acclimated to naturally ventilated (NV) environments respond to hot and warm environments differently than people who are acclimated to air-conditioned (AC) environments. However, it is not clear whether physiological acclimatization contributes to this discrepancy. To study whether living and working in NV or AC environments for long periods of time can lead to different types of physiological acclimatization, and whether physiological acclimatization has an important influence on people's responses of thermal comfort, measurements of physiological reactions (including skin temperature, sweat rate, heart rate variability, and heat stress protein 70) and thermal comfort responses were conducted in a 'heat shock' environment (climate chamber) with 20 people (10 in the NV group and 10 in the AC group). The results showed that the NV group had a significantly stronger capacity for physiological regulation to the heat shock than the AC group. In other words, the NV group did not feel as hot and uncomfortable as the AC group did. These results strongly indicate that living and working in indoor thermal environments for long periods of time affects people's physiological acclimatization. Also, it appears that long-term exposure to stable AC environments may weaken people's thermal adaptability. PRACTICAL IMPLICATIONS: This study examined the psychological and physiological differences of thermal adaptability of people used to air-conditioned environments and naturally ventilated environments. The results suggested that long-term exposure to stable air-conditioned environments may weaken people's thermal adaptability. Therefore, it might be advantageous for people to spend less time in static air-conditioned environments; this is not only because of its possible deleterious impact on people's physiological adaptability, but also because the air-conditioners' high-energy consumption will contribute to the effects of global warming.  相似文献   

4.
Recently, airtight envelope system has become popular in the design of office buildings to reduce heating and cooling loads. Maintaining allowable indoor air quality (IAQ) for such airtight buildings totally depends on mechanical ventilation systems. Subsequently, poor operation of the ventilation system in such office buildings causes ineffective removal of polluted indoor air, and displays a sign of “sick building syndrome” (SBS). User's perception is an important parameter for evaluating IAQ. A questionnaire study was carried out to investigate the prevalence of the SBS at a multistory centrally air-conditioned Airport Authority of India (AAI) building in the New Delhi city. Quantification of the perceptions of the users regarding IAQ was done by converting their responses to a SBS score. The quantified answers were then subjected to statistical analysis. Qualitative analysis of the questionnaire was carried out to evaluate relationships between SBS score and carbon dioxide (CO2) and other parameters related to building and work environment. Quantitative analysis of IAQ was also conducted by monitoring indoor concentrations of four pollutants, namely, nitrogen dioxide (NO2), sulphur dioxide (SO2), suspended particulate matter (SPM) and carbon monoxide (CO). Concentrations of pollutants were complying with IAQ standards as given by ASHRAE and WHO. The SBS was higher on the third floor as compared to other floors and the control tower. The main symptoms prevailing were headache (51%), lethargy (50%), and dryness in body mucous (33%). The third floor and the control tower were affected by infiltration, mainly from entrance doors. A direct relation between the average SBS score and CO2 concentration was found, i.e., the average SBS score increased with CO2 concentration and vice versa, clearly signifying the usefulness of SBS score in IAQ.  相似文献   

5.
Several studies have reported poor indoor air quality (IAQ) in day care centers (DCCs), and other studies have shown that children attending them have an increased risk of respiratory and gastrointestinal infections. The aim of this study was to investigate whether there is an association between ventilation in DCCs and sick leave among nursery children. Data on child sick leave within an 11‐week period were obtained for 635 children attending 20 DCCs. Ventilation measurements included three proxies of ventilation: air exchange rate (ACR) measured with the decay method, ACR measured by the perfluorocarbon tracer gas (PFT) method, and CO2 concentration measured over a 1‐week period. All but two DCCs had balanced mechanical ventilation system, which could explain the low CO2 levels measured. The mean concentration of CO2 was 643 ppm, exceeding 1000 ppm in only one DCC. A statistically significant inverse relationship between the number of sick days and ACR measured with the decay method was found for crude and adjusted analysis, with a 12% decrease in number of sick days per hour increase in ACR measured with the decay method. This study suggests a relationship between sick leave among nursery children and ventilation in DCCs, as measured with the decay method.  相似文献   

6.
During the winter of 1988/1989, the relationships between the prevalence of work-related health and indoor climate complaints and a number of building, management, workplace and personal characteristics have been investigated in a study in more than 60 office buildings located throughout the Netherlands. To collect the information, a questionnaire was prepared on health and indoor climate complaints and personal and workplace characteristics. A checklist was used to obtain information on building characteristics More than 7000 questionnaires were completed by the regular users of the buildings investigated. The results showed that the prevalence of symptoms was higher in air-conditioned buildings than in naturally or mechanically ventilated buildings. some other variables were also related with most work-related complaints after adjustment for selected management, personal, workplace and job characteristics. These included gender, work satisfaction in general, presence of allergies and/or respiratory symptoms, and personal control over temperature at the workplace. No differences were found in symptom prevalences between buildings with spray and steam humidification. The combination of air-conditioning and humidification did not lead to further increases in the prevalence of complaints as compared to buildings with only airconditioning or only humidification.  相似文献   

7.
Treatment of fresh air in ventilation systems for air-conditioned offices consumes a significant amount of energy and affects the indoor air quality (IAQ). In this study, energy impact on the ventilation systems was examined against certain IAQ objectives for indoor airborne bacteria exposure risk in air-conditioned offices of Hong Kong. The relationship between thermal energy consumptions and indoor airborne bacteria exposure levels based on regional surveys was investigated. The thermal energy consumptions of ventilation systems operating for carbon dioxide (CO2) exposure concentrations between 800 and 1200 ppmv for typical office buildings and the corresponding failure probability against some target bacteria exposure levels were evaluated. The results showed that, for a reference indoor environment at a CO2 exposure concentration of 1000 ppmv, the predicted average thermal energy saving of ventilation system for a unit increment of the expected risk of unsatisfactory IAQ of 1% was 55 MJ m−2 yr−1 and for a unit decrement of 1%, the predicted additional thermal energy consumption was 58 MJ m−2 yr−1 respectively. This study would be a useful source of reference in evaluation of the energy performance of ventilation strategies in air-conditioned offices at a quantified exposure risk of airborne bacteria.  相似文献   

8.
Treatment of fresh air in ventilation systems for air-conditioning consumes a considerable amount of energy and affects the indoor air quality (IAQ). In this study, energy impact on ventilation systems was examined against certain IAQ objectives for indoor formaldehyde exposure risk in air-conditioned offices of Hong Kong. Thermal energy consumptions for ventilation systems and indoor formaldehyde exposure concentrations based on some regional surveys of typical offices in Hong Kong were reviewed. The thermal energy consumptions of ventilation systems operating for CO2 exposure concentrations between 800 ppmv and 1200 ppmv for typical office buildings and the corresponding formaldehyde exposure risks were evaluated. The results showed that, for a reference indoor environment at a CO2 exposure concentration of 1000 ppmv, the average thermal energy saving of ventilation system for a unit increment of the acceptable formaldehyde exposure limit of 1 h (loss of life expectancy of 0.0417 day) was 280 MJ m−2 yr−1; and for a unit decrement of the exposure limit of 1 h, an additional average thermal energy consumption of 480 MJ m−2 yr−1 was expected. This study would be a useful source of reference in evaluation of the energy performance of ventilation strategies in air-conditioned offices at a quantified exposure risk of formaldehyde.  相似文献   

9.
Several studies have found that indoor air quality (IAQ) in schools is often poor and may affect the health of the pupils. Building ventilation is a means to reduce pollutants indoors, but different designs should be evaluated for their effectiveness in different environments. In a field experiment performed at four classrooms in one school building, air was supplied either in the mixing or in the displacement mode, and we collected information on exposures, pupils' perception of IAQ and climate, and health symptoms and performed clinical examinations. The room temperature, relative humidity, concentration of CO?, and cat allergen were measured at the breathing height and were similar during each ventilation mode. The children perceived IAQ were similar in the two ventilation regimes, and there were few differences in symptom reports or clinical parameters. However, the pupils reported more eye symptoms during displacement ventilation. PRACTICAL IMPLICATIONS: Both mixing and displacement ventilation may be appropriate in school classrooms as long as the overall design, ventilation rates, and maintenance of systems are satisfactory.  相似文献   

10.
To evaluate the association of heating, ventilation and air-conditioning systems (HVAC) and respiratory symptoms in a tropical city, self-administered questionnaires were given to 2000 individuals working in air-conditioned office buildings and to 500 control workers in naturally ventilated buildings. Reported symptoms from the two populations were analyzed using chi-square tests, univariate and multiple logistic regressions models. Symptoms were the outcome variable and the odds ratios were adjusted by gender, age, accumulated work time, smoking habits and atopic background. There was a 79.8% response rate and there was a positive association of nasal symptoms (odds ratio, OR = 1.59, 95% confidence interval, CI = 1.11-2.28), naso-ocular symptoms (OR = 1.58, 95% CI = 1.05-2.38), persistent cough (OR = 3.04, 95% CI = 2.00-4.63) sinusitis symptoms (OR = 1.85, 95% CI = 1.27-2.71) and building-related worsening of the symptoms (OR = 4.92, 95% CI = 2.93-8.27) with working in air-conditioned buildings. In conclusion, our study suggests that artificial air-conditioning is a matter of concern for respiratory symptoms in cities with hot and humid climate. PRACTICAL IMPLICATIONS: This study suggests that indoor air-related respiratory symptoms are a matter of concern in places with hot and humid climate. The regression models were adjusted by confounders that could be used in further reanalysis of indoor air quality related symptoms and ventilation systems with expanded variety of climatic conditions.  相似文献   

11.
Zuraimi MS 《Indoor air》2010,20(6):445-457
Ventilation duct cleaning (DC) is widely advocated to provide good indoor air quality (IAQ), health benefits, cost savings, and enhance ventilation system performance. The aim of the present review is to evaluate the scientific evidence as shown in the literature. There is evidence that under normal operating conditions, ventilation ducts can be contaminated with dusts and serve as reservoirs for microbials to proliferate. While controlled experiments noted that contaminants resuspension can elevate exposure levels indoors, no field studies have correlated poor IAQ with duct contamination. Despite high efficiencies of contaminant removal within the ducts during cleaning, reductions for different indoor air pollutants vary widely, where, post-cleaning air pollutants concentrations can be higher than pre-cleaning levels. Further, there are health concerns in the use of biocides, sealants and encapsulants. There is inadequate evidence to show that DC can improve airflow in ducts and reduce energy consumption. Although epidemiological studies indicate suggestive evidence that improperly maintained ducts are associated with higher risks of symptoms among building occupants, this review finds insufficient evidence that DC can alleviate occupant's symptoms. In summary, the need for duct cleanliness has to be properly balanced by the probable generation of indoor pollution resulting from DC and subsequent potential health risks. PRACTICAL IMPLICATIONS: Existing evidence is insufficient to draw solid conclusions regarding positive impact of duct cleaning on IAQ, health benefits, cost savings and HVAC performance. Maintaining duct cleanliness has to be properly balanced by the probable generation of indoor pollution and potential health risks.  相似文献   

12.
Indoor climate of two new blocks of flats was investigated. The case building was built for people with respiratory diseases by following the instructions of the Finnish Classification of Indoor Climate, Construction and Finishing Materials, while the control building was built using conventional building technology. The main indoor air parameters (temperature, relative humidity and levels of CO, CO2, ammonia, total volatile organic compounds, total suspended particles, fungal spores, bacteria and cat, dog and house dust mite allergens) were measured in six apartments of both the buildings on five occasions during the 3-year occupancy. In addition, a questionnaire to evaluate symptoms of the occupants and their satisfaction with their home environment was conducted in connection with indoor air quality (IAQ) measurements. The levels of indoor air pollutants in the case building were, in general, lower than those in the control building. In addition, the asthmatic occupants informed that their symptoms had decreased during the occupancy in the case building. This case study showed that high IAQ is possible to reach by careful design, proper materials and equipment and on high-quality construction with reasonable additional costs. In addition, the study indicated that good IAQ can also be maintained during the occupancy, if sufficient information on factors affecting IAQ and guidance on proper use and care of equipment are available for occupants.  相似文献   

13.
More and more studies reported that there were insufficient ventilation and excessive CO_2 concentration in air-conditioned residential buildings, but few solutions were provided. This study investigates the overnight evolution of CO_2 concentration in air-conditioned residential buildings and then focuses mainly on the evaluation of three ventilation strategies, including overnight natural ventilation, short-term mechanical ventilation and short-term natural ventilation. On-site measurements were conducted in a typical residential bedroom in Hong Kong in September. The indoor and outdoor CO_2 concentration, air temperature and relative humidity as well as the outdoor wind speed during the measurements were analysed. Ventilation rates were calculated based on the time series of CO_2 concentration. This study confirms that additional ventilation is usually needed in air-conditioned residential buildings. Overnight natural ventilation with even a small opening is associated with excessive energy consumption and deteriorated indoor thermal environment. Short-term natural ventilation strategies are inefficient and uncontrollable. Compared to the best short-term natural ventilation strategy, a reasonably designed short-term mechanical ventilation strategy requires only a 41% of ventilation period to complete one full replacement of indoor air and to reach a lower indoor CO_2 concentration. Nighttime case studies and a theoretical analysis suggest that a few several-minute mechanical ventilation periods could potentially maintain an acceptable indoor air quality for a normal sleeping period of 8 h.  相似文献   

14.
《Building and Environment》1999,34(4):479-503
The main function of a mechanically ventilated office building is to provide a healthy and comfortable working environment for occupants, while maintaining minimum energy consumption. Twelve mechanically ventilated buildings were selected. They varied greatly in surface area, number of floors, occupant density, and building use. The indoor air quality, thermal comfort, energy consumption, and perception of occupants were investigated in these buildings. A total of 877 subjects participated in the questionnaire survey during the hot summer months of June, July, and August, and during the cold winter months of January, February, and March. The questions included in the questionnaire dealt with health, environmental sensitivity, work area satisfaction, personal control of the workstations environment, and job satisfaction. Measured parameters concerning the quality of indoor air included ventilation rate, concentration of TVOC, CO2, CO, RH, and formaldehyde. The thermal comfort parameters included room air, mean radiant, plane radiant asymmetry, and dew point temperatures, as well as air velocity and turbulence intensity. Monthly energy consumption data was also gathered for each building. Ventilation performance, in terms of air flow rate and indoor air quality, was compared with the ASHRAE Standard 62-89R (Ventilation for Acceptable Indoor Air Quality. Atlanta: American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc. U.S.A. [1]). The measured and calculated thermal environmental results were also compared with the ASHRAE Standard 55-92 (Thermal Environmental Conditions for Human Occupancy. Atlanta: American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc. U.S.A. [2]). CO2 and CO levels satisfied the recommended limits. The outdoor airflow rate was half that recommended in only one building. The formaldehyde and TVOC levels were moderately higher than suggested comfort levels. However, more than 56% of the occupants rated dissatisfaction with the indoor air quality. Only 63% of the indoor climatic observations fell within the ASHRAE Standard 55-92 summer comfort zone; 27% in the winter. However, only 69% of those surveyed agreed with the comfort zones. More symptoms were reported by workers who perceived IAQ to be poor. Positive relationships were observed between the job satisfaction and satisfaction with office air quality, ventilation, work area temperature, and ratings of work area environment. However, job dissatisfaction did not correlate with symptom reports. The occupants were more dissatisfied with IAQ when they preferred more air movement. In other words, the higher the perceived air movement, the greater the satisfaction with IAQ.  相似文献   

15.
Day care centers provide an important exposure arena with potential harmful health effects for children. This study has linked health effect data from a survey among 942 3-5-year-old Oslo children with information on day care center characteristics collected during inspection of the 175 day care centers these children attended. The aim of the study was to estimate associations between dampness problems and other building characteristics and several respiratory health outcomes. Dampness problems (sign of molds, water leakage, damage to floor/wall) were observed in 51% of the day care centers. In multiple logistic regression analyses none of the studied symptoms and diseases (nightly cough, blocked or runny nose without common cold, wheeze, heavy breathing or chest tightness, the common cold, tonsillitis/pharyngitis, otitis media, bronchitis, pneumonia, asthma, and allergic rhinitis) were systematically associated with dampness problems or type of ventilation in day care centers. None of the studied indicators of day care center exposures were found to have a clear effect on day care children's respiratory health. Even so this study does not rule out negative health effects of day care center exposures. The study demonstrates that population-based studies of these relations are demanding with regard to assessment of exposure and health outcomes. PRACTICAL IMPLICATIONS: Simple and easy-to-register indicators of exposures like dampness problems and type of ventilation assessed in 175 day care centers were not related to respiratory health among 3-5-year-old Norwegian children attending the day care centers. The study does not rule out negative health effects of day care center exposures, but demonstrates methodological challenges needed to be addressed in studies of health effects of the day care environment.  相似文献   

16.
The scientific literature through 2005 on the effects of ventilation rates on health in indoor environments has been reviewed by a multidisciplinary group. The group judged 27 papers published in peer-reviewed scientific journals as providing sufficient information on both ventilation rates and health effects to inform the relationship. Consistency was found across multiple investigations and different epidemiologic designs for different populations. Multiple health endpoints show similar relationships with ventilation rate. There is biological plausibility for an association of health outcomes with ventilation rates, although the literature does not provide clear evidence on particular agent(s) for the effects. Higher ventilation rates in offices, up to about 25 l/s per person, are associated with reduced prevalence of sick building syndrome (SBS) symptoms. The limited available data suggest that inflammation, respiratory infections, asthma symptoms and short-term sick leave increase with lower ventilation rates. Home ventilation rates above 0.5 air changes per hour (h(-1)) have been associated with a reduced risk of allergic manifestations among children in a Nordic climate. The need remains for more studies of the relationship between ventilation rates and health, especially in diverse climates, in locations with polluted outdoor air and in buildings other than offices. PRACTICAL IMPLICATIONS: Ventilation with outdoor air plays an important role influencing human exposures to indoor pollutants. This review and assessment indicates that increasing ventilation rates above currently adopted standards and guidelines should result in reduced prevalence of negative health outcomes. Building operators and designers should avoid low ventilation rates unless alternative effective measures, such as source control or air cleaning, are employed to limit indoor pollutant levels.  相似文献   

17.
Abstract The aim was to study the respiratory symptoms among children exposed to indoor air molds in a day-care environment in Finland. Two day-care centers with a mold problem and two reference day-care centers were included in the study and the health data of the children were collected with a follow-up study of two periods. A total of 229 children 3-7 years old attended the day-care centers. During the first follow-up period, the children in the two day-care centers with mold problems had a significantly increased risk of sore throat, purulent and non-purulent nasal discharge, nasal congestion, hoarseness and common cold. During the second follow-up period, a significantly increased risk of purulent nasal discharge, nasal congestion, hoarseness and cough was observed. Upper respiratory tract symptoms, at least once during the study period, were more prevalent among the children attending mold-problem day-care centers. The mold-exposed children had such symptoms repeatedly or the symptoms were prolonged. In conclusion, in the mold-problem day-care centers, overall morbidity for respiratory symptoms and for common cold increased in comparison with the reference day-care centers.  相似文献   

18.
Poor indoor air quality (IAQ) in schools is related to increased symptom reporting in students. We investigated whether parental worry about school IAQ influences this association. Data came from survey collected from five Finnish primary schools with observed IAQ problems and five control schools. Parents (n = 1868) of primary school students reported worry about IAQ in schools and symptoms of their children. Associations between observed IAQ problems, worry, and five symptom scores (ie, respiratory, lower respiratory, eye, skin, and general symptoms) were analyzed using multivariate logistic regression and mediation analysis. Parents were on average more worried in schools with observed IAQ problems. Observed IAQ problems were strongly associated with increased worry and all symptoms under study (unadjusted ORs ranged between 1.48 [95% CI 1.48‐2.16] and 2.70 [95% CI 1.52‐5.17]). Parental worry was associated with all symptoms (unadjusted ORs ranged between 2.49 [95% CI 1.75‐3.60] and 4.92 [95% CI 2.77‐9.40]). Mediation analyses suggested that parental worry might partially explain the association between observed IAQ problems and symptom reporting (proportion mediated ranged between 67% and 84% for the different symptoms). However, prospective studies are needed to assess causal relationships between observed IAQ problems, worry, and symptom reporting in schools.  相似文献   

19.
Rural areas of developing countries are particularly reliant on biomass for cooking and heating. Women and children in these areas are often exposed to high levels of pollutants from biomass combustion that is associated with a range of respiratory symptoms. Domestic exposure to carbon monoxide (CO) and respirable particles (RSPs) in association with respiratory symptoms among women and children in Zimbabwe was investigated in 48 households. Health status and household characteristics were also recorded. In this study, indoor levels of CO and RSPs exceeded World Health Organization (WHO) air quality guidelines in over 95% of kitchens. The level of indoor air pollutants was associated with the area of kitchen windows and the length of cooking time combined with the level of fire combustion. Prevalence of respiratory symptoms was 94% for women and 77% for children. In addition, women reporting respiratory symptoms were exposed to higher levels of RSPs when compared with those reporting no respiratory symptoms. The study results indicated that levels of indoor air pollutants in rural Zimbabwe may contribute to respiratory symptoms in both women and children. PRACTICAL IMPLICATIONS: Levels of respirable particles and carbon monoxide in kitchens in rural Zimbabwe are unacceptably high and measures to reduce levels should be undertaken. Based on the study findings, recommendations for increasing the area of kitchen windows may be considered as a practical method of reducing indoor air pollutants in rural Zimbabwe.  相似文献   

20.
What is IAQ?     
Ole Fanger P 《Indoor air》2006,16(5):328-334
In spaces for human occupancy indoor air quality (IAQ) is often defined as the extent to which human requirements are met. But what requirements do people have in relation to indoor air? The desire is that the air be perceived as fresh and pleasant, that it has no negative impact on their health, and that the air is stimulating and promotes their work, i.e. it increases their productivity and the learning of their children in the classroom at school. Present ventilation standards and guidelines do not care about productivity and learning and have the very modest requirement that the indoor air shall be 'acceptable,' meaning that the most sensitive group of persons (usually 20%) perceive the air as unacceptable while the remaining less sensitive persons may find the air barely acceptable. With such a modest aim it is not surprising that comprehensive field studies in many countries in buildings in which ventilation standards are met show high percentages of dissatisfied persons and of those suffering from sick building syndrome symptoms. Recent studies show that improvement of IAQ by a factor of 2-7 compared with existing standards increases office productivity and school learning significantly, while decreasing the risk of allergic symptoms and asthma in homes. To make indoor air acceptable, even for the most sensitive persons, an improvement of 1-2 orders of magnitude may be required. The paper will discuss the development of new methods that can provide such substantial improvements of IAQ while maintaining or even decreasing ventilation and energy usage. A paradigm shift is required and further future shifts are foreseen where we learn how to make indoor air equally fresh and pleasant as outdoors when it is best. Or even better, i.e. 'out of this world.' PRACTICAL IMPLICATIONS: The paper estimates an enormous potential for improving IAQ in practice utilizing new emerging technologies. This will enable us to provide IAQ which is acceptable even for the most sensitive persons. Already modest improvements compared to present minimum standards and typical conditions in practice can significantly decrease the risk of asthma/allergy in homes, improve learning in schools and increase productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号