首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perovskite type catalysts with SrCoO3 and Sr0.8Ce0.2CoO3 compositions have been prepared by co-precipitation and other methods and, their catalytic activity towards diesel particulate matter (PM)/carbon oxidation has been evaluated under the loose contact condition. These catalysts show excellent catalytic activity for PM/carbon oxidation, despite their low surface area and under the loose contact condition. The synergistic effects of Ce incorporation in perovskite and presence of a small amount of potassium appears to be responsible for the high soot oxidation activity of these perovskite type materials. The Ce incorporation seems to be contributing by enhancing the redox property of the catalyst, while it appears unlikely that potassium is contributing by improving the catalyst–soot contact through its volatization. The catalysts show excellent thermal stability and stable activity under repeated cycles of use.  相似文献   

2.
The influence of NO on the oxidation of metal (cerium, copper, and iron)-activated soot was studied. Without NO in the gas phase, the activation energy of soot is ≈170 kJ/mol, independent of the type of metal applied in the soot. The rate-limiting step in the oxidation with oxygen is probably the decomposition of surface oxygen complexes. In presence of NO, the oxidation rate of soot mixed with a supported platinum catalyst is increased significantly, especially for cerium-activated soot. The activation energy of the oxidation reaction is decreased by the presence of NO in the gas phase. The increase in reaction rate as a result of NO and a platinum catalyst is explained by a cycle of two catalytic reactions, where platinum oxidises NO to NO2, which subsequently oxidises soot using cerium as a catalyst, forming NO which can participate in the reaction more than once. This oxidation mechanism can be put into practice by combining a platinum-activated particulate trap with a combination of platinum and cerium fuel additives. This combination might be a breakthrough in the search for an applicable catalytic soot removal system.  相似文献   

3.
Ceria (CeO2) and rare-earth modified ceria (CeReOx with Re = La, Pr, Sm, Y) catalysts are prepared by nitrate precursor calcination and are characterised by BET surface area, XRD, H2-TPR, and Raman spectroscopy. Potential of the catalysts in the soot oxidation is evaluated in TGA with a feed gas containing O2. Seven hundred degree Celsius calcination leads to a decrease in the surface area of the rare-earth modified CeO2 compared with CeO2. However, an increase in the meso/macro pore volume, an important parameter for the soot oxidation with O2, is observed. Rare-earth ion doping led to the stabilisation of the CeO2 surface area when calcined at 1000 °C. XRD, H2-TPR, and Raman characterisation show a solid solution formation in most of the mixed oxide catalysts. Surface segregation of dopant and even separate phases, in CeSmOx and CeYOx catalysts, are, however, observed. CePrOx and CeLaOx catalysts show superior soot oxidation activity (100% soot oxidation below 550 °C) compared with CeSmOx, CeYOx, and CeO2. The improved soot oxidation activity of rare-earth doped CeO2 catalysts with O2 can be correlated with the increased meso/micro pore volume and stabilisation of external surface area. The segregation of the phases and the enrichment of the catalyst surface with unreducible dopant decrease the intrinsic soot oxidation activity of the potential CeO2 catalytic sites. Doping CeO2 with a reducible ion such as Pr4+/3+ shows an increase in the soot oxidation. However, the ease of catalyst reduction and the bulk oxygen-storage capacity is not a critical parameter in the determination of the soot oxidation activity. During the soot oxidation with O2, the function of the catalyst is to increase the ‘active oxygen’ transfer to the soot surface, but it does not change the rate-determining step, as evident from the unchanged apparent activation energy (around 150 kJ mol−1), for the catalysed and un-catalysed soot oxidation. Spill over of oxygen on the soot surface and its subsequent adsorption at the active carbon sites is an important intermediate step in the soot oxidation mechanism.  相似文献   

4.
A series of Ag-doped manganese oxide catalyst were synthesized by the reflux method in an acid medium. The surface structure of the catalysts was characterized by N2 adsorption, XRD and TEM experiments. The catalysts showed excellent catalytic activity for CO oxidation. The adsorption and oxidation of CO on a 1.0% Ag/MnOx catalyst between 393 and 493 K were studied by means of single pulse experiments in a TAP reactor. The adsorption of CO was reversible at these temperatures and CO2 was formed in an oxidation reaction of CO and lattice oxygen. Curve fitting to the experimental TAP response curves of the reactant and product was used to determine the kinetic parameters for the elementary steps. The activation energies were 83 kJ/mol for CO desorption, 31 kJ/mol for CO2 desorption, and 116 kJ/mol for the surface CO oxidation by lattice oxygen. In addition, the effect of coadsorbed O2 on CO adsorption was studied by the TAP technique. Below 353 K, there was a sharp increase, by about one order of magnitude, in the rate constant of CO adsorption promoted by the presence of coadsorbed O2.  相似文献   

5.
Vanadium oxides supported on γ-Al2O3, SiO2, TiO2, and ZrO2 were studied on their molecular structures and reactive performances for soot combustion. To investigate the effect of different alkali metals on the structures and reactivities of supported-vanadium oxide catalysts, they were doped into the V4/TiO2 catalyst which had the best intrinsic activity for soot combustion in the selected supported vanadium oxide catalysts. The experimental results demonstrated that the catalytic properties of these catalysts depended on the vanadium loading amount, support nature, and the presence or the absence of alkali metals. The spectroscopic analysis (FT-IR and UV–vis) and H2-TPR results revealed that the higher activity of alkali-promoted vanadium oxide catalysts could be related to the ability of alkali metal promoting the redox cycle of the active vanadyl species. TG results showed that adding alkali to Vm/TiO2 catalyst was beneficial to lowering their melting points. Low melting points could ensure the good surface atom migration ability, which would improve the contact between the catalyst and soot. Due to the alkali metal components promoting the redox ability and the mobility of the catalysts, alkali-modified vanadium oxide catalysts could remarkably improve their catalytic activities for soot combustion. The catalytic activity order for soot combustion followed Li > Na > K > Rb > Cs in the catalyst system of alkali-V4/TiO2, and the reason why it followed this sequence was discussed.  相似文献   

6.
In this paper we describe the production and investigation of two supported gold catalyst systems prepared by magnetron sputtering: Au on WO3 and Au on activated carbon. The magnetron sputtering technique entails using an argon plasma to sputter a high purity gold target producing a flux of gold atoms which are deposited onto a constantly tumbling support material. This technique offers a number of advantages over conventional chemical preparation methods. One advantage is the ability to create gold nanoparticles (diameters <3 nm) on unusual support materials, such as WO3 and carbon, which are generally not accessible using the ubiquitous deposition-precipitation technique. We present data demonstrating the formation of catalytic gold nanoparticles with average diameters of 1.7 nm (Au/C) and 2.1 nm (Au/WO3), as well as a substantial number of single atom species on the Au/C sample. Prototypical carbon monoxide oxidation (Au/WO3) and glycerol oxidation (Au/C) reactions were performed in order to gauge the activity of these catalysts. The WO3 supported catalyst exhibits substantial catalytic activity from room temperature to 135 °C (0.0018–0.082 mol CO/mol Au s) with an activation energy near 23 kJ/mol. The activity of the Au/C catalyst was compared to a Au/C catalyst prepared from a poly(vinyl alcohol) (PVA) sol. The smaller catalysts prepared by sputtering are more active than the large gold particles prepared using the PVA sol, however the larger gold nanoparticles are substantially more selective towards the production of intermediate products from the oxidation of glycerol.  相似文献   

7.
The effect of a commercial Pt/Al2O3 catalyst on the oxidation by NO2 and O2 of a model soot (carbon black) in conditions close to automotive exhaust gas aftertreatment is investigated. Isothermal oxidations of a physical mixture of carbon black and catalyst in a fixed bed reactor were performed in the temperature range 300–450 °C. The experimental results indicate that no significant effect of the Pt catalyst on the direct oxidation of carbon by O2 and NO2 is observed. However, in presence of NO2–O2 mixture, it is found that besides the well established catalytic reoxidation of NO into NO2, Pt also exerts a catalytic effect on the cooperative carbon–NO2–O2 oxidation reaction. An overall mechanism involving the formation of atomic oxygen over Pt sites followed by its transfer to the carbon surface is established. Thus, the presence of Pt catalyst increases the surface concentration of –C(O) complexes which then react with NO2 leading to an enhanced carbon consumption. The resulting kinetic equation allows to model more precisely the catalytic regeneration of soot traps for automotive applications.  相似文献   

8.
Properties of the oxidized activated carbon KAU treated at different temperatures in inert atmosphere were studied by means of DTA, Boehm titration, XPS and AFM methods and their catalytic activity in H2S oxidation by air was determined. XPS analysis has shown the existence of three types of oxygen species on carbon catalysts surface. The content of oxygen containing groups determined by Boehm titration is correlated with their amount obtained by XPS. Catalytic activity of the KAU catalysts in selective oxidation of hydrogen sulfide is connected with chemisorbed charged oxygen species (O3.1 oxygen type with BE 536.8–537.7 eV) present on the carbons surface.

Formation of dense sulfur layer (islands of sulfur) on the carbons surface and removal of active oxygen species are the reason of the catalysts deactivation in H2S selective oxidation. The treatment of deactivated catalyst in inert atmosphere at 300 °C gives full regeneration of the catalyst activity at low temperature reaction but only its partial reducing at high reaction temperature. The last case is connected with transformation of chemisorbed charged oxygen species into CO groups.

The KAU samples treated in flow of inert gas at 900–1000 °C were very active in H2S oxidation to elemental sulfur transforming up to 51–57 mmol H2S/g catalyst at 180 °C with formation of 1.7–1.9 g Sx/g catalyst.  相似文献   


9.
Ceria (CeO2) and rare-earth modified ceria (CeReOx with Re = La3+, Pr3+/4+, Sm3+, Y3+) supports and Pt impregnated supports are studied for the soot oxidation under a loose contact with the catalyst with the feed gas, containing NO + O2. The catalysts are characterised by XRD, H2-TPR, DRIFT and Raman spectroscopy. Among the single component oxides, CeO2 is significantly more active compared with the other lanthanide oxides used in this study. Doping CeO2 with Pr3+/4+ and La3+ improved, however, the soot oxidation activity of the resulting solid solutions. This improvement is correlated with the surface area in the case of CeLaOx and to the surface area and redox properties of CePrOx catalyst. The NO conversion to NO2 over these catalysts is responsible for the soot oxidation activity. If the activity per unit surface area is compared CePrOx is the most active one. This indicates that though La3+ can stabilise the surface area of the catalyst in fact it decreases the soot oxidation activity of Ce4+. The lattice oxygen participates in NO conversion to NO2 and the rate of this lattice oxygen transfer is much faster on CePrOx. In general, the improvement of the soot oxidation is observed over the Pt impregnated CeO2 and CeReOx catalysts, and can be correlated to the presence of Pt°. The surface reduction of the supports in the presence of Pt occurred below 100 °C. The surface redox properties of the support in the Pt catalysts do not have a significant role in the NO to NO2 conversion. In spite of the lower surface area, the Pt/CeYOx and Pt/CeO2 catalysts are found to be more active due to larger Pt crystal sizes. The presence of Pt also improved the CO conversion to CO2 over these catalysts. The activation energy for the soot oxidation with NO + O2 is found to be around 50 kJ/mol.  相似文献   

10.
This study addresses the catalytic reaction of NOx and soot into N2 and CO2 under O2-rich conditions. To elucidate the mechanism of the soot/NOx/O2 reaction and particularly the role of the catalyst -Fe2O3 is used as model sample. Furthermore, a series of examinations is also made with pure soot for reference purposes. Temperature programmed oxidation and transient experiments in which the soot/O2 and soot/NO reaction are temporally separated show that the NO reduction occurs on the soot surface without direct participation of the Fe2O3 catalyst. The first reaction step is the formation of CC(O) groups that is mainly associated with the attack of oxygen on the soot surface. The decomposition of these complexes leads to active carbon sites on which NO is adsorbed. Furthermore, the oxidation of soot by oxygen provides a specific configuration of active carbon sites with suitable atomic orbital orientation that enables the chemisorption and dissociation of NO as well as the recombination of two adjacent N atoms to evolve N2. Moreover, carbothermal reaction, high resolution transmission electron microscopy and isotopic studies result in a mechanistic model that describes the role of the Fe2O3 catalyst. This model includes the dissociative adsorption of O2 on the iron oxide, surface migration of the oxygen to the contact points of soot and catalyst and then final transfer of O to the soot. Moreover, our experimental data suggest that the contact between both solids is maintained up to high conversion levels thus resulting in continuous oxygen transfer from catalyst to soot. As no coordinative interaction of soot and Fe2O3 catalyst is evidenced by diffuse reflectance infrared Fourier transform spectroscopy a van der Waals type interaction is supposed.  相似文献   

11.
This paper reports results of studies on structure and activity in soot combustion of nanocrystalline CeO2 and CeLnOx mixed oxides (Ln = Pr, Tb, Lu, Ce/Ln atomic ratios 5/1). Nano-sized (4–5 nm) oxides with narrow size distribution were prepared by a microemulsion method W/O. Microstructure, morphology and reductivity of the oxides annealed up to 950 °C in O2 and H2 were analyzed by HRTEM, XRD, FT-IR, Raman spectroscopy and H2-TPR. Obtained mixed oxides had fluorite structure of CeO2 and all exhibited improved resistance against crystal growth in O2, but only CeLuOx behaved better than CeO2 in hydrogen.

The catalytic activity of CeO2, CeLnOx and physical mixtures of CeO2 + Ln2O3 in a model soot oxidation by air was studied in “tight contact” mode by using thermogravimetry. Half oxidation temperature T1/2 for soot oxidation catalysed by nano-sized CeO2 and CeLnOx was similar and ca. 100 °C lower than non-catalysed oxidation. However, the mixed oxides were much more active during successive catalytic cycles, due to better resistance to sintering. Physical mixtures of nanooxides (CeO2 + Ln2O3) showed exceptionally high initial activity in soot oxidation (decrease in T1/2 by ca. 200 °C) but degraded strongly in successive oxidation cycles. The high initial activity was due to the synergetic effect of nitrate groups present in highly disordered surface of nanocrystalline Ln2O3 and enhanced reductivity of nanocrystalline CeO2.  相似文献   


12.
CeO2 and CeReOx_y catalysts are prepared by the calcination at different temperatures (y = 500–1000 °C) and having a different composition (Re = La3+ or Pr3+/4+, 0–90 wt.%). The catalysts are characterised by XRD, H2-TPR, Raman, and BET surface area. The soot oxidation is studied with O2 and NO + O2 in the tight and loose contact conditions, respectively. CeO2 sinters between 800–900 °C due to a grain growth, leading to an increased crystallite size and a decreased BET surface area. La3+ or Pr3+/4+ hinders the grain growth of CeO2 and, thereby, improving the surface catalytic properties. Using O2 as an oxidant, an improved soot oxidation is observed over CeLaOx_y and CePrOx_y in the whole dopant weight loading and calcination temperature range studied, compared with CeO2. Using NO + O2, the soot conversion decreased over CeLaOx_y catalysts calcined below 800 °C compared with the soot oxidation over CeO2_y. CePrOx_y, on the other hand, showed a superior soot oxidation activity in the whole composition and calcination temperature range using NO + O2. The improvement in the soot oxidation activity over the various catalysts with O2 can be explained based on an improvement in the external surface area. The superior soot oxidation activity of CePrOx_y with NO + O2 is explained by the changes in the redox properties of the catalyst as well as surface area. CePrOx_y, having 50 wt.% of dopant, is found to be the best catalyst due to synergism between cerium and praseodymium compared to pure components. NO into NO2 oxidation activity, that determines soot oxidation activity, is improved over all CePrOx catalysts.  相似文献   

13.
In this study, cobalt and lead based mixed oxide catalysts were tested for their soot oxidation ability. In addition to a mixed oxide formerly marketed as ceramic paint, a home made set was also prepared by incipient wetness impregnation of a cobalt oxide powder with a lead acetate solution and subsequent calcination. The materials investigated in this study were shown to decrease the peak combustion temperature of home made soot from 500 to 385 °C in air. Soot oxidation tests under inert (N2) atmospheres revealed that the oxidation took place by using the lattice oxygen of the catalyst. Reaction temperature could be further decreased when these mixed oxide catalysts were impregnated with platinum. An optimum platinum loading was determined as 0.5 wt% based on the peak combustion temperature of the soot. The role of Pt was to assist the oxygen transfer from the gas phase to the lattice. It was observed that NO2 is a better oxidizing agent as compared to air whereas NO had hardly any activity against soot oxidation reaction. When the mixed oxide catalyst was impregnated with platinum, the peak combustion temperature was measured as 310 °C in the presence of NOx and air. The catalyst's unique performance was in terms of the rate of soot oxidation. Under the experimental conditions studied here, the soot oxidation was so facile that the oxygen in the gas phase was completely depleted. This stream of oxygen depleted and CO enriched gas phase can be used to reduce NOx in the presence of a downstream or a co-catalyst.  相似文献   

14.
In order to develop a catalyst with high activity and stability for catalytic wet air oxidation (CWAO) process at room temperature and atmospheric pressure, we prepared Fe2O3-CeO2-TiO2/γ-Al2O3 by consecutive impregnation, and determined its properties using BET, SEM, XRF, XPS and chemical analysis techniques. The degradation of an azo dye, methyl orange, in CWAO process with Fe2O3-CeO2-TiO2/γ-Al2O3 used as catalyst at room temperature and atmospheric pressure was also investigated, and the results show that the catalyst has an excellent catalytic activity in treating synthetic wastewater containing 500 mg/L methyl orange, and 98.09% of color and 96.08% of total organic carbon (TOC) can be removed in 2.5 h. The degradation pathway of methyl orange was analyzed by UV–vis and FT-IR spectra. The result of leaching tests shows the catalyst has an excellent stability with negligible leaching ions, and the leaching of Ce is effectively controlled by adding Ti, because Ce and Ti in the catalyst take the form of compound oxides, and the deactivation of the catalyst in successive runs is caused by the adsorption of intermediates on the surface and coverage of the active sites. The catalytic activity of the deactivated catalyst can be generally restored by rinsing it in hydrochloric acid followed by calcination.  相似文献   

15.
Cu2Ag2O3 has been prepared by a precipitation method and evaluated for ambient temperature carbon monoxide oxidation. The Cu2Ag2O3 catalyst demonstrated appreciable activity and a relationship with preparation ageing time was observed. An ageing time of 4 h produced a catalyst with the highest oxidation performance. The catalyst precursor materials, prepared by drying at room temperature, displayed initial high activity, which decreased with time on line. The precursors were transformed during CO oxidation to form the mixed oxide Cu2Ag2O3 as the material was dried in situ. A comparison of the catalytic activity has been made with a representative sample of a high activity hopcalite, mixed copper/manganese oxide catalyst. On the basis of CO oxidation rate data corrected for the effect of catalyst surface area the Cu2Ag2O3, aged for 4 h was at least as active as the hopcalite catalyst.  相似文献   

16.
Potassium-loaded lanthana is a promising catalyst to be used for the simultaneous abatement of soot and NOx, which are the main diesel-exhaust pollutants. With potassium loadings between 4.5 and 10 wt.% and calcination temperatures between 400 and 700 °C, this catalyst mixed with soot gave maximum combustion rates between 350 and 400 °C in TPO experiments, showing a good hydrothermal stability. There was no difference in activity when it was either mixed by grinding in an agate mortar or mixed by shaking in a sample bottle (tight and loose conditions, respectively). Moreover, when the K-loaded La2O3 is used as washcoat for a cordierite monolith, there were found no significant differences in the catalytic behaviour of the system, which implies its potentiality for practical purposes.

The influence of poisons as water and SO2 was investigated. While water does not affect the soot combustion activity, SO2 slightly shift the TPO peak to higher temperature. Surface basicity, which is a key factor, was analysed by measuring the interactions of the catalytic surface with CO2 using the high frequency CO2 pulses technique, which proved to be very sensitive, detecting minor changes by modifications in the dynamics of the CO2 adsorption–desorption process. Water diminishes the interaction with CO2, probably as a consequence of an adsorption competition. The SO2 treated catalyst is equilibrated with the CO2 atmosphere more rapidly if compared with the untreated one, also showing a lower interaction. The lower the interaction with the CO2, the lower the activity.

Differential scanning calorimetric (DSC) results indicate that the soot combustion reaction coexists with the thermal decomposition of hydroxide and carbonate species, occurring in the same temperature range (350–460 °C). The presence of potassium increases surface basicity shifting the endothermic decomposition signal to higher temperatures.

We also found that NO2 strongly interacts with both La2O3 and K/La2O3 solids, probably through the formation of monodentate nitrate species which are stable under He atmosphere until 490 °C. These nitrate species further react with the solid to form bulk nitrate compounds. The addition of Cobalt decreases the nitrates stability and catalyses the NOx to N2 reduction under a reducing atmosphere, which is a necessary step for a working NOx catalytic trap. Preliminary studies performed in this work demonstrated the feasibility of using these catalysts to simultaneously remove NOx and soot particles from diesel exhausts. The nitrate formation is still observed during the catalytic combustion of soot in the presence of NOx, making our K/La2O3 a very interesting system for practical applications in simultaneous soot combustion and NOx storage in diesel exhausts.  相似文献   


17.
MnOx–CeO2 mixed oxides prepared by sol–gel method, coprecipitation method and modified coprecipitation method were investigated for the complete oxidation of formaldehyde. Structure analysis by H2-TPR and XPS revealed that there were more Mn4+ species and richer lattice oxygen on the surface of the catalyst prepared by the modified coprecipitation method than those of the catalysts prepared by sol–gel and coprecipitation methods, resulting in much higher catalytic activity toward complete oxidation of formaldehyde. The effect of calcination temperature on the structural features and catalytic behavior of the MnOx–CeO2 mixed oxides prepared by the modified coprecipitation was further examined, and the catalyst calcined at 773 K showed 100% formaldehyde conversion at a temperature as low as 373 K. For the samples calcined below 773 K, no any diffraction peak corresponding to manganese oxides could be detected by XRD measurement due to the formation of MnOx–CeO2 solid solution. While the diffraction peaks corresponding to MnO2 phase in the samples calcined above 773 K were clearly observed, indicating the occurrence of phase segregation between MnO2 and CeO2. Accordingly, it was supposed that the strong interaction between MnOx and CeO2, which depends on the preparation route and the calcination temperature, played a crucial role in determining the catalytic activity toward the complete oxidation of formaldehyde.  相似文献   

18.
尖晶石型复合氧化物因具有独特的结构特征而成为相对理想的柴油车尾气处理催化剂。采用溶胶-凝胶法制备尖晶石型Mn_(1-x)M_xCo_2O_4催化剂,通过X射线衍射(XRD)和程序升温氧化(TDO)等对Mn_(1-x)M_xCo_2O_4催化剂进行表征。结果表明,制备的样品Mn_(1-x)M_xCo_2O_4均为尖晶石型复合氧化物;掺杂Cu、Ce后,催化剂的氧化性能有不同程度的变化。在固定床微型反应器上对催化剂催化活性进行评价,结果表明,与纯MnCo_2O_4相比,Mn_(0.9)Ce_(0.1)Co_2O_4催化剂催化活性提高,Mn_(0.9)Cu_(0.1)Co_2O_4催化剂催化活性降低,但CO_2选择性增加。  相似文献   

19.
A series of calcium-modified alumina-supported cobalt catalysts were prepared with a two-step impregnation method, and the effect of calcium on the catalytic performances of the catalysts for the partial oxidation of methane to syngas (CO and H2) was investigated at 750 °C. Also, the catalysts were characterized by XRD, TEM, TPR and (in situ) Raman. At 6 wt.% of cobalt loading, the unmodified alumina-supported cobalt catalyst showed a very low activity and a rapid deactivation, while the calcium-modified catalyst presented a good performance for this process with the CH4 conversion of 88%, CO selectivity of 94% and undetectable carbon deposition during a long-time running. Characterization results showed that the calcium modification can effectively increase the dispersion and reducibility of Co3O4, decrease the Co metal particle size, and suppress the reoxidation of cobalt as well as the phase transformation to form CoAl2O4 spinel phases under the reaction conditions. These could be related to the excellent catalytic performances of Co/Ca/Al2O3 catalysts.  相似文献   

20.
MnOx–CeO2 mixed oxides with a Mn/(Mn + Ce) molar ratios of 0–1 were prepared by a modified coprecipitation method and investigated for the complete oxidation of formaldehyde. The MnOx–CeO2 with Mn/(Mn + Ce) molar ratio of 0.5 exhibited the highest catalytic activity among the MnOx–CeO2 mixed oxides. Structure analysis by X-ray powder diffraction and temperature-programmed reduction of hydrogen revealed that the formation of MnOx–CeO2 solid solution greatly improved the low-temperature reducibility, resulting in a higher catalytic activity for the oxidation of formaldehyde. Promoting effect of Pt on the MnOx–CeO2 mixed oxide indicated that both the Pt precursors and the reduction temperature greatly affected the catalytic performance. Pt/MnOx–CeO2 catalyst prepared from chlorine-free precursor showed extremely high activity and stability after pretreatment with hydrogen at 473 K. 100% conversion of formaldehyde was achieved at ambient temperature and no deactivation was observed for 120 h time-on-stream. The promoting effect of Pt was ascribed to enhance the effective activation of oxygen molecule on the MnOx–CeO2 support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号