首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
针对四分位偏差分形维对信号幅值大小和分布敏感的缺点,提出了适用于故障识别的四分位偏差分形维改进算法,将四分位偏差分形维及其截距组成特征向量,应用高斯混合模型进行故障模式描述(QDFD-GMM),并采用贝叶斯分类器进行故障识别.分别采用QDFD-GMM和基于重构相空间与高斯混合模型算法(RPS-GMM)对同一组故障齿轮振动信号进行分类,结果表明:QDFD-GMM具有更高的识别率和运算速度,具有更强的鲁棒性.  相似文献   

2.
转子系统故障信号是典型的非线性、非平稳信号,分形几何为描述转子系统故障信号的特性提供了一个分析工具,但仅仅依靠分形维数无法有效的提取转子系统的故障特征。本文引入紧密度和丰度两个量,与基于的分形维数一起,对转子系统故障信号进行分析;最后采用神经网络技术对转子系统的正常、不对中、不平衡、碰磨、松动五种不同的运行状态进行分类识别。实验结果表明,通过对分形维数和紧密度、丰度的联合可较好地评定和区分转子系统的运行状态。  相似文献   

3.
基于VMD及广义分形维数矩阵的滚动轴承故障诊断   总被引:1,自引:0,他引:1  
提出基于变分模态分解及广义分形维数矩阵的滚动轴承故障诊断方法。对信号进行变分模态分解得到若干模态函数,根据不同权重因子计算得到每个模态函数的广义分形维数序列,排列构成广义分形维数矩阵,最后通过分析待测信号和各样本信号的广义分形维数矩阵的相关系数判断故障状态。实验结果表明该方法能精确、稳定提取故障特征,区分不同状态的信号。  相似文献   

4.
针对齿轮故障振动信号具有多重分形特征,提出多重分形与神经网络相结合的机械故障诊断方法。采用多重分形理论计算出振动时间序列的多分形谱f(α)和广义分形维数D(q),并将多分形谱能和广义分形维数谱能作为特征量,构成二维特征向量。将该特征向量作为概率神经网络的输入参量,对采自齿轮故障台的振动信号进行故障分类。作为对比,将关联维数作为特征量输入同样参数的概率神经网络并进行故障识别,结果表明,所提出的方法具有更高的识别率。  相似文献   

5.
论述了关联维数的基本概念和性质,给出了定量描述分形特征的重要参数——关联维数的计算方法,分析了齿轮葙故障时振动的特点.通过对试验获取的齿轮故障振动信号进行分析计算,确定了关联维数与齿轮葙故障程度之间的联系.结果表明,齿轮箱的不同运行情况对应的关联维数有明显不同.因此,可用关联维数作为区分齿轮葙工作状态的特征参数.  相似文献   

6.
为准确提取非线性、非平稳的滚动轴承故障信号中的故障特征,提出基于变分模式分解(Variational Mode Decomposition,VMD)和1.5维Teager能量谱的滚动轴承故障特征提取方法;变分模式分解(VMD)是一种新的信号自适应分解方法,1.5维Teager能量谱具有1.5维谱良好的降噪效果和Teager能量算子强化信号瞬态冲击的优点。故障特征提取过程:首先,对滚动轴承故障信号进行VMD分解得到一组分量,根据峭度-相关系数准则筛选出2个冲击特征明显分量进行信号重构;再次,对重构信号进行1.5维Teager能量谱分析;最后根据能量谱图的分析,提取出滚动轴承的内圈和滚动体故障特征。仿真信号和试验信号的分析都验证了提出方法的有效性;通过与EEMD分解比较,采用VMD变分模式分解和1.5维Teager能量谱的分析方法更具有区分性,可以有效识别滚动轴承的故障特征。  相似文献   

7.
形态学广义分形维数在发动机故障诊断中的应用   总被引:3,自引:2,他引:3       下载免费PDF全文
发动机故障信号是一种典型的非线性信号,分形几何理论为描述非线性故障信号的特性提供了一个有力的分析工具。广义分形维数能够很好的描述信号的几何特征和局部尺度行为,所蕴含的信息比单一的分形维数要深刻而全面。针对传统的广义分形维数计算方法的缺陷,本文提出基于数学形态学操作的广义分形维数计算方法,并对发动机正常、失火和气门间隙过大故障信号进行了分析,结果表明,与传统的盒计数法计算的广义分形维数相比,形态学广义分形维数能够更加有效地区分发动机在不同状态下的信号,并且数学形态学只涉及简单的加减和取大、取小运算,因此计算简单快速,为准确判断发动机故障状态提供了一种快速有效的新方法。  相似文献   

8.
针对往复压缩机故障信息干扰耦合,振动信号呈现复杂非线性、非平稳等特性,提出一种基于多重分形与奇异值分解的多传感器故障特征提取方法。广义分形维数能够更精细的刻画信号的局部尺度行为,通过对多传感器信号进行多重分形分析,构成广义分形维数初始特征矩阵,应用奇异值分解法进行数据压缩,提取矩阵特征值作为故障特征向量。以往复压缩机传动机构为研究对象,通过振动信号提取不同位置轴承间隙大故障的特征向量,利用支持向量机作为分类器,与单一传感器多重分形法和多传感器单重分形法进行对比分析,验证了该方法的有效性。  相似文献   

9.
针对齿轮的故障振动信号的非平稳、非线性特征,采用非线性信号分析方法排列熵算法计算振动信号的排列熵大小来反映信号的复杂度。单通道的信息源难以反映出设备的真实运行状态,采用同源信息融合技术对双通道振动信号进行同源信息融合,计算融合后的信号的排列熵,进而提出了一种基于全矢排列熵(FVPE)的齿轮故障特征提取方法,通过实验模拟齿根裂纹、断齿和缺齿这三种故障状态,实验结果表明本方法有效地解决了单一通道信息源不完善造成的误诊难题,并可以很好地区分三种故障。  相似文献   

10.
提出一种基于总体平均经验模式分解(Ensemble Empirical Mode of Decomposition EEMD)和关联维数相结合的小电流接地故障选线新方法。EEMD对非线性、非平稳信号的处理,不仅能达到与(Empirical Mode Decomposition EMD)相同的分解效果,同时又能有效地抑制模式混叠,非常适用于对小电流接地故障信号的处理。关联维数是在故障诊断领域中应用最广泛的一种分形维数。关联维数作为反映系统状态的特征量,能定量分析故障状态,提高故障诊断能力。在计算关联维数前,需要进行相空间重构,采用极大联合熵算法求取最佳延迟时间,相比以往用互信息求取延迟时间的方法而言,该方法简化了算法,缩短了计算关联维数的时间。最后采用G-P算法计算零序电流相关分量的关联维数,通过比较关联维数,实现故障选线。实验结果表明上述方法能够快速准确地选出故障线路,为小电流接地故障选线提供了一种有效的新方法。  相似文献   

11.
对风机齿轮箱轴承故障诊断进行了研究,提出一种基于分形维数和遗传算法支持向量机(GA-SVM)相结合的故障诊断算法。基于常用的时域特征参数作为支持向量机的识别参数,引入分形维数特征参数来提升支持向量机的识别精度。提出了基于遗传算法(GA)的支持向量机参数优化的模型,通过GA的寻优自动获得最优的支持向量机参数。采用某风场的风电机组齿轮箱轴承数据进行故障诊断,实验表明,所提出的GA-SVM模型很好地解决了参数选择的问题,同时基于分形维数的特征参数也提高了风电机组轴承故障的识别准确率。  相似文献   

12.
孟宗  刘东  岳建辉  詹旭阳  马钊  李晶 《计量学报》2017,38(4):449-452
为了有效地从非线性、非平稳性的风电齿轮箱故障信号中提取有用的信息成分,将微分经验模式分解、局部时频熵和支持向量机相结合,提出了一种微分经验模式分解局部时频熵和支持向量机的风电齿轮箱故障诊断方法。采用自适应多尺度的数学形态学对故障信号进行滤波;将滤波后的信号进行微分经验模式分解,获得齿轮振动信号的若干IMF分量;把每一个IMF进行分块,计算每一块的局部时频熵值;把局部时频熵值作为支持向量机的输入参数,通过支持向量机进行故障识别与诊断。实验结果表明,基于微分经验模式分解局部时频熵和支持向量机相结合的方法能够对风电齿轮箱故障信号进行准确有效地识别分类。  相似文献   

13.
针对不同故障类别齿轮的故障信息难以有效获取、齿面多类故障难以准确聚类的问题,提出一种基于特征处理的最大方差展开(Maximum Variance Unfolding,MVU)维数简约的齿轮故障诊断模型。首先对获取的振动信号进行最小熵反卷积(Minimum Entropy Deconvolution,MED)预处理,将高低频段进行分离并筛除不确定信号,并在多域上提取信息熵作为特征指标;而后,利用样本点分布矩阵筛选高效表征特征指标并构建高维特征空间,并利用改进的MVU算法对其进行维数简约,获取低维的真实子空间;最后,将其输入到超球多类支持向量机中进行超球构造与分类识别。通过实验数据的分析对比验证模型的有效性。  相似文献   

14.
针对滚动轴承故障信号非平稳非线性且易受背景噪声干扰的特点,结合深度学习的优势,提出了一种基于卷积神经网络(CNN)的滚动轴承故障诊断法。将不同故障下多个传感器测得的1维(1D)振动信号转化为2维(2D)灰度图像作为网络输入,并将其分为训练集和测试集;将训练集输入卷积神经网络进行训练,自动提取其中的特征;测试集被用于验证学习完毕的网络的有效性,实现滚动轴承故障识别。该方法不依赖于人为经验和信号处理技术进行预先的信号特征提取,实验数据分析表明,相比于经典的支持向量机和概率神经网络方法,提出的方法识别准确率更高且更稳定。  相似文献   

15.
According to the characteristics of gear fault vibration signals, a method for gear fault diagnosis based upon the empirical mode decomposition (EMD) is proposed in this paper. By using EMD, any complicated signal can be decomposed into a finite and often small number of intrinsic mode functions ( IMFs) , which are based upon the local characteristic time scale of the signal. Thus, EMD is perfectly suitable for non-stationary signal processing and fault characteristics extracting. It is well known that a gear vibration signal consists of a number of frequency family components, each of which is a modulated signal. Thus, we can use EMD to decompose a gear fault vibration signal into a number of lMF components, some of which correspond to the frequency families, and the others are noises. Therefore, the frequency families can be separated and the noise can be decreased at the same time. The proposed method has been applied to gear fault diagnosis. The results show that both the sensitivity and the reliability of this method are satisfactory.  相似文献   

16.
基于谐波小波分析的故障诊断方法研究   总被引:13,自引:3,他引:13  
谐波小波分析可有效提取非平稳信号中的奇异成分。但当信号中存在噪声时,谐波小波分解的时频等高线图无法凸显其奇异成分。本文采用谐波小波时频剖面图,对仿真信号和齿轮故障信号进行分析,成功提取出信号中的奇异成分。诊断实例证明,该方法可有效用于设备故障诊断。  相似文献   

17.
孟宗  李良良 《计量学报》2016,(3):284-288
提出了一种基于局部特征尺度分解与形态学分形维数的滚动轴承故障诊断方法。首先采用局部特征尺度分解方法将机械故障信号分解为若干个内禀尺度分量,然后利用形态学分形维数计算包含故障特征分量的分形维数,将得到的分形维数作为特征量判别信号故障的状态,实验结果表明基于局部特征尺度分解与形态学分形维数的故障诊断方法能够有效识别滚动轴承的内圈故障、外圈故障、滚动体故障和正常状态,实现滚动轴承故障诊断。  相似文献   

18.
针对从滚动轴承非线性、非平稳振动信号中提取故障特征困难的问题,提出一种基于半监督判别自组织增量学习神经网络界标点的等度规映射(SSDSL-Isomap)的滚动轴承故障诊断方法。利用基于变分模态分解的改进复合多尺度样本熵(VMD-ICMSE)从复杂域提取振动信号的故障特征,构建高维故障特征集;采用SSDSL-Isomap方法对高维故障特征集进行维数约简,提取出利于识别的低维、敏感故障特征子集;应用粒子群优化极限学习机(PSO-ELM)分类器对低维故障特征进行故障识别,判别故障类型。VMD-ICMSE方法集成了VMD自适应分解非线性信号与ICMSE衡量时间序列复杂性程度的优势,提高故障特征提取能力;SSDSL-Isomap方法综合了全局流形结构、半监督型双约束图构建以及SOINN界标点选取的优点,增强故障分类能力。调心球轴承故障诊断实验分析结果表明,该方法对实验数据的故障识别率达到100%。  相似文献   

19.
故障轴承振动信号具有分形特征,可以利用分形维数有效识别变速器轴承的故障模式.噪声的存在对分形维数的计算结果影响较大,为此采用经验模态分解(EMD)方法,对变速器轴承振动信号进行EMD分解,计算分解后的IMF分量的分形维数,提取出变速器轴承不同技术状态下的故障特征。对实测变速器轴承振动信号分析,结果表明:EMD能对不同频带信号进行有效分离;特定IMF分量的分形维数能敏感反应变速器轴承技术状态,可以作为变速器轴承故障诊断的特征参数;EMD与分形维数相结合是提取变速器轴承故障特征的一种有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号