首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 10-bit 200-MS/s CMOS parallel pipeline A/D converter   总被引:1,自引:0,他引:1  
This paper describes a 10-bit 200-MS/s CMOS parallel pipeline analog-to-digital (A/D) converter that can sample input frequencies above 200 MHz. The converter utilizes a front-end sample-and-hold (S/H) circuit and four parallel interleaved pipeline component A/D converters followed by a digital offset compensation. By optimizing for power in the architectural level, incorporating extensively parallelism and double-sampling both in the S/H circuit and the component ADCs, a power dissipation of only 280 mW from a 3.0-V supply is achieved. Implemented in a 0.5-μm CMOS process, the circuit occupies an area of 7.4 mm2. The converter achieves a differential nonlinearity and integral nonlinearity of ±0.8 LSB and ±0.9 LSB, respectively, while the peak spurious-free-dynamic-range is 55 dB and the total harmonic distortion better than 46 dB at a sampling rate of 200 MS/s  相似文献   

2.
介绍了采用0.18μm数字工艺制造、工作在3.3V下、10位100MS/s转换速率的流水线模数转换器。提出了一种适用于1.5位MDAC的新的金属电容结构,并且使用了高带宽低功耗运算放大器、对称自举开关和体切换的PMOS开关来提高电路性能。芯片已经通过流片验证,版图面积为1.35mm×0.99mm,功耗为175mW。14.7MS/s转换速率下测得的DNL和INL分别为0.2LSB和0.45LSB,100MS/s转换速率下测得的DNL和INL分别为1LSB和2.7LSB,SINAD为49.4dB,SFDR为66.8dB。  相似文献   

3.
A 10-b current steering CMOS digital-to-analog converter (DAC) is described, with optimized performance for frequency domain applications. For sampling frequencies up to 200 MSample/s, the spurious free dynamic range (SFDR) is better than 60 dB for signals from DC to Nyquist. For sampling frequencies up to 400 MSample/s, the SFDR is better than 55 dB for signals from DC to Nyquist. The measured differential nonlinearity and integral nonlinearity are 0.1 least significant bit (LSB) and 0.2 LSB, respectively. The circuit is fabricated in a 0.35-μm, single-poly, four-metal, 3.3 V, standard digital CMOS process and occupies 0.6 mm2. When operating at 500 MSample/s, it dissipates 125 mW from a 3.3 V power supply. This DAC is optimized for embedded applications with large amounts of digital circuitry  相似文献   

4.
An 8-bit 20-MS/s time-domain analog-to-digital data converter (ADC) using the zero-crossing-based circuit technique is presented. Compared with the conventional ADCs, signal processing is executed in both the voltage and time domains. Since no high-gain operational amplifier is needed, this time-domain ADC works well in a low supply voltage. The proposed ADC has been fabricated in a 0.18-mum CMOS process. Its power dissipation is 4.64 mW from a supply voltage of 1.8 V. This active area occupies 1.2 times 0.7 mm2. The measured signal-to-noise-distortion ratio achieves 44.2 dB at an input frequency of 10 MHz. The integral nonlinearity is less than plusmn1.07 LSB, and the differential nonlinearity is less than plusmn0.72 LSB. This time-domain ADC achieves the effective bits of 7.1 for a Nyquist input frequency at 20 MS/s.  相似文献   

5.
A 55-mW, 10-bit, 40-Msample/s Nyquist-rate CMOS ADC   总被引:4,自引:0,他引:4  
A low-power 10-bit converter that can sample input frequencies above 100 MHz is presented. The converter consumes 55 mW when sampling at fs=40 MHz from a 3-V supply, which also includes a bandgap and a reference circuit (70 mW if including digital drivers with a 10-pF load). It exhibits higher than 9.5 effective number of bits for an input frequency at Nyquist (fin=fs/2=20 MHz). The differential and integral nonlinearity of the converter are within ±0.3 and ±0.75 LSB, respectively, when sampling at 40 MHz, and improve to a 12-bit accuracy level for lower sampling rates. The overall performance is achieved using a pipelined architecture without a dedicated sample/hold amplifier circuit at the input. The converter is implemented in double-poly, triple-metal 0.35-μm CMOS technology and occupies an area of 2.6 mm2  相似文献   

6.
A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification   总被引:3,自引:0,他引:3  
Precision amplifiers dominate the power dissipation in most high-speed pipelined analog-to-digital converters (ADCs). We propose a digital background calibration technique as an enabling element to replace precision amplifiers by simple power-efficient open-loop stages. In the multibit first stage of a 12-bit 75-MSamples/s proof-of-concept prototype, we achieve more than 60% residue amplifier power savings over a conventional implementation. The ADC has been fabricated in a 0.35-/spl mu/m double-poly quadruple-metal CMOS technology and achieves typical differential and integral nonlinearity within 0.5 LSB and 0.9 LSB, respectively. At Nyquist input frequencies, the measured signal-to-noise ratio is 67 dB and the total harmonic distortion is -74 dB. The IC consumes 290 mW at 3 V and occupies 7.9 mm/sup 2/.  相似文献   

7.
A low-voltage 10-bit digital-to-analog converter (DAC) for static/dc operation is fabricated in a standard 0.18-/spl mu/m CMOS process. The DAC is optimized for large integrated circuit systems where possibly dozens of such DAC would be employed for the purpose of digitally controlled analog circuit calibration. The DAC occupies 110 /spl mu/m/spl times/94 /spl mu/m die area. A segmented R-2R architecture is used for the DAC core in order to maximize matching accuracy for a minimal use of die area. A pseudocommon centroid layout is introduced to overcome the layout restrictions of conventional common centroid techniques. A linear current mirror is proposed in order to achieve linear output current with reduced voltage headroom. The measured differential nonlinearity by integral nonlinearity (DNL/INL) is better than 0.7/0.75 LSB and 0.8/2 LSB for 1.8-V and 1.4-V power supplies, respectively. The DAC remains monotonic (|DNL|<1 LSB) as INL reaches 4 LSB down to 1.3-V operation. The DAC consumes 2.2 mA of current at all supply voltage settings.  相似文献   

8.
A Nyquist-rate pixel-level ADC for CMOS image sensors   总被引:2,自引:0,他引:2  
A multichannel bit-serial (MCBS) analog-to-digital converter (ADC) is presented. The ADC is ideally suited to pixel-level implementation in a CMOS image sensor. The ADC uses successive comparisons to output one bit at a time simultaneously from all pixels. It is implemented using a 1-bit comparator/latch pair per pixel or per group of neighboring pixels, and a digital-to-analog-converter/controller shared by all pixels. The comparator/latch pair operates at very slow speeds and can be implemented using simple robust circuits. The ADCs can be fully tested by applying electrical signals without any optics or light sources. A CMOS 320×256 sensor using the MCBS ADC is described. The chip measures 4.14×5.16 mm2. It achieves 10×10 μm2 pixel size at 28% fill factor in 0.35 μm CMOS technology. Each 2×2 pixel block shares an ADC. The pixel block circuit comprises 18 transistors. It operates in subthreshold to maximize gain and minimize power consumption. The power consumed by the sensor array is 20 mW at 30 frames/s. The measured integral nonlinearity is 2.3 LSB, and differential nonlinearity is 1.2 LSB at eight bits of resolution. The standard deviation of the gain and offset fixed pattern noise due to the ADC are 0.24 and 0.2%, respectively  相似文献   

9.
A 12-bit 320-MSample/s current-steering D/A converter in 0.18-/spl mu/m CMOS is presented. In order to achieve high linearity and spurious free dynamic range (SFDR), a large degree of segmentation has been used, with the seven most significant bits (MSBs) being implemented as equally weighted current sources. A "design-for-layout" approach has allowed this to be done in an area of just 0.44 mm/sup 2/. The increased switching noise associated with a high degree of segmentation has been reduced by a new latch architecture. Differential nonlinearity of /spl plusmn/0.3 LSB and integral nonlinearity of /spl plusmn/0.4 LSB have been measured. Low-frequency SFDR of 95 dB has been achieved, while SFDR at 320 MS/s remains above 70 and 60 dB for input frequencies up to 10 and 60 MHz, respectively. The converter consumes a total of 82 mW from 1.8-V and 3.3-V supplies. The validity of the techniques used has been demonstrated by fabricating the converter in two separate 0.18-/spl mu/m processes with similar results measured for both.  相似文献   

10.
This paper presents the design and implementation of a 14-bit,100 MS/s CMOS digital-to-analog converter(DAC).Analog background self-calibration based on the concept of analog current trimming is introduced.A constant clock load switch driver,a calibration period randomization circuit and a return-to-zero output stage have been adopted to improve the dynamic performance.The chip has been manufactured in a SMIC 0.13-μm process and occupies 1.33× 0.97 mm2 of the core area.The current consumption is 50 mA under 1.2/3.3 V dual power supplies for digital and analog,respectively.The measured differential and integral nonlinearity is 3.1 LSB and 4.3 LSB,respectively.The SFDR is 72.8 dB at a 1 MHz signal and a 100 MHz sampling frequency.  相似文献   

11.
A 10-bit 40-Msample/s two-channel parallel pipelined ADC with monolithic digital background calibration has been designed and fabricated in a 1 μm CMOS technology. Adaptive signal processing and extra resolution in each channel are used to carry out digital background calibration. Test results show that the ADC achieves a signal-to-noise-and-distortion ratio of 55 dB for a 0.8-MHz sinusoidal input, a peak integral nonlinearity of 0.34 LSB, and a peak differential nonlinearity of 0.14 LSB, both at a 10-bit level. The active area is 42 mm2, and the power dissipation is 565 mW from a 5 V supply  相似文献   

12.
The circuit configuration of a cyclic analog-to-digital (A/D) converter using switched-capacitor techniques is described. The analog portion of the circuit consists of two operational amplifiers, four capacitors, and ten switches regardless of the number of bits per sample converted, and completes an n-bit conversion in 3n clock cycles. The conversion characteristics are inherently insensitive both to capacitor ratio and to amplifier offset voltage. The circuit, therefore, can be realized in a small die area. The effects of finite amplifier gain and switch charge injection on the conversion accuracy are discussed. A prototype chip has been fabricated in a 2-μm CMOS technology operating on a single 5-V supply. When it is operated as an 8-bit converter at a sampling rate of 8 kHz, the maximum conversion error is 0.2 LSB (least-significant bit) for differential nonlinearity and 0.5 LSB for integral nonlinearity. The die area measures 0.79 mm2  相似文献   

13.
Traditional and some recently reported low power, high speed and high resolution approaches for SAR A/D converters are discussed. Based on SMIC 65 nm CMOS technology, two typical low power methods reported in previous works are validated by circuit design and simulation. Design challenges and considerations for high speed SAR A/D converters are presented. Moreover, an R-C combination based method is also addressed and a 10-bit SAR A/D converter with this approach is implemented in SMIC 90 nm CMOS process. The DNL and INL are measured to be less than 0.31 LSB and 0.59 LSB respectively. With an input frequency of 420 kHz at 1 MS/s sampling rate, the SFDR and ENOB are measured to be 67.6 dB and 9.46 bits respectively, and the power dissipation is measured to be just 3.17 mW.  相似文献   

14.
This paper describes an 8-bit 125 Mhzlow-powerCMOS fully-foldinganalog-to-digital converter(ADC).A novel mixed-averaging distributed T/H circuit is proposed to improve the accuracy. Folding circuits are not only used in the fine converter but also in the coarse one and in the bit synchronization block to reduce the number of comparators for low power. This ADC is implemented in 0.5μm CMOS technology and occupies a die area of 2 × 1.5 mm~2. The measured differential nonlinearity and integral nonlinearity are 0.6 LSB/-0.8 LSB and 0.9 LSB/-1.2 LSB, respectively. The ADC exhibits 44.3 dB of signal-to-noise plus distortion ratio and 53.5 dB of spurious-free dynamic range for 1 MHz input sine-wave. The power dissipation is 138 mW at a sampling rate of 125 MHz at a 5 V supply.  相似文献   

15.
贺文伟  孟桥  张翼  唐凯 《半导体学报》2014,35(8):085004-5
本文基于90nm CMOS工艺设计了一个单通道 2GSPS, 8-bit 折叠插值模数转换器。本设计采用折叠级联结构,通过在折叠电路间增加级间采样保持器的方法增加量化时间。电路中采用了数字前台辅助校正技术以提高信号的线性度。后仿结果表明,在奈奎斯特采样频率,该ADC的微分非线性DNL<±0.3LSB,积分非线性INL<±0.25LSB,有效位数达到7.338比特。包括焊盘在内的整体芯片面积为880×880 μm2。电路在1.2V 电源电压下功耗为210mW.  相似文献   

16.
A modified RSD algorithm has been implemented in a switched-current pipelined A/D converter. The offset insensitivity of the RSD Converter reduces the effect of several nonidealities proper to current copier cells. Moreover, the benefits resulting from the large tolerances inherent to the RSD algorithm and the pipelined architecture result in an improved conversion rate. Measurements on a first prototype give an integral nonlinearity error less than 0.8 LSB for 10-bit accuracy. Power dissipation is 20 mW and silicon area is 2.5 mm2 . The measured sampling rate is 550 kS/s. It is an improvement by a factor of twenty compared to known equivalent CMOS switched-current converters. It is nevertheless still well below the predicted conversion rate of 4.5 MHz, which should be obtained once this A/D converter is integrated into an analog front-end. Full compatibility with standard digital technologies makes this kind of converter attractive for low power, medium-fast converters with 10-bit accuracy  相似文献   

17.
In this paper a 10-bit 1.2-GSample/s Nyquist current-steering CMOS digital-to-analog converter (DAC) is presented. Segmentation (90%) has been used to get the best DNL and reduce glitch energy. This segmentation ratio guarantees the monotonicity. Higher performance is achieved using a novel 3-D thermometer decoding method which reduces the area, power consumption, and the number of control signals of the digital section. Simulation results show that the spurious-free-dynamic-range (SFDR) in Nyquist rate is better than 65 dB for sampling frequency up to 1.2-GSample/s. The analog voltage supply is 3.3 V while the digital part of the chip operates at only 2.4 V. Total power consumption in Nyquist rate measurement is 149 mW. The chip has been processed in a standard 0.35 μm CMOS technology. Active area of chip is 1.97 mm2.  相似文献   

18.
A 10-bit 200-MHz CMOS video DAC for HDTV applications   总被引:1,自引:0,他引:1  
This paper describes a 10-bit 200-MHz CMOS current steering digital-to-analog converter (DAC) for HDTV applications. The proposed 10-bit DAC is composed of a unit decoded matrix for 6 MSBs and a binary weighted array for 4 LSB’s, considering linearity, power consumption, routing area, and glitch energy. A new switching scheme for the unit decoded matrix is developed to improve linearity further. Cascade current sources and differential switches with deglitch latch improve dynamic performance. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.3 LSB and 0.2 LSB, respectively. The converter achieves a spurious-free dynamic range (SFDR) of above 55 dB over a100-MHz bandwidth and low glitch energy of 1.5 pVs. The circuit is fabricated in a 0.25 μm CMOS process and occupies 0.91 mm2. When operating at 200 M Sample/s, it dissipates 82 mW from a 3.3 V power supply.  相似文献   

19.
This paper presents a pipeline analog-to-digital converter (ADC) with improved linearity. The linearity improvement is achieved through a combination of oversampling and mismatch shaping, which modulates the distortion energy out of band. Mismatch shaping can be realized in a traditional 1-bit/stage pipeline ADC, but the ADCs transfer characteristic properties limit its effectiveness at pushing the distortion out of band. These limitations can be alleviated by using a 1-bit/stage commutative feedback capacitor switching pipeline design. A test chip was fabricated in a 0.35-μm CMOS process to demonstrate mismatch shaping. Experimental results obtained indicate that the spurious-free dynamic range improves by 8.5 dB to 76 dB when mismatch shaping is used at an oversampling ratio of 4 and a sampling rate of 61 MHz. The signal-to-noise and distortion ratio improves by 3 dB and the maximum integral nonlinearity decreases from 1.8 to 0.6 LSB at the 12-bit level  相似文献   

20.
A 10-bit 2.5 MS/s SAR A/D converter is presented. In the circuit design, an R-C hybrid architecture D/A converter, pseudo-differential comparison architecture and low power voltage level shifters are utilized. Design chal-lenges and considerations are also discussed. In the layout design, each unit resistor is sided by dummies for good matching performance, and the capacitors are routed with a common-central symmetry method to reduce the nonlin-earity error. This proposed converter is implemented based on 90 nm CMOS logic process. With a 3.3 V analog supply and a 1.0 V digital supply, the differential and integral nonlinearity are measured to be less than 0.36 LSB and 0.69 LSB respectively. With an input frequency of 1.2 MHz at 2.5 MS/s sampling rate, the SFDR and ENOB are measured to be 72.86 dB and 9.43 bits respectively, and the power dissipation is measured to be 6.62 mW including the output drivers. This SAR A/D converter occupies an area of 238×214 μm~2. The design results of this converter show that it is suitable for multi-supply embedded SoC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号