首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Volume Compensation Method for Routing Irrigation Canal Demand Changes   总被引:3,自引:0,他引:3  
This paper examines the problem of routing known water demands through gate-controlled, open-channel irrigation delivery systems. Volume-compensation principles were used to route multiple demands in multiple-pool canal systems. The volume-compensation method schedules each demand change individually under the assumption of a series of steady states and superimposes the individual results. Volume-compensation routing schedules were computed for two of the test cases proposed by the ASCE Task Committee on Canal Automation. Alternative routing schedules were computed with the gate-stroking method, which is an inverse solution of the unsteady-flow equations. Both solutions were tested through unsteady-flow simulation. While not as effective as gate-stroking solutions, volume-compensation solutions performed satisfactorily under ideal flow control conditions. When subjected to realistic operational constraints, specifically constraints on the flow regulation interval, and also to incorrect canal hydraulic roughness information, both methods performed similarly.  相似文献   

2.
Automated open- and closed-loop control systems can enhance the performance of irrigation delivery systems. This paper examines the response of the canal test cases developed by the ASCE task committee on canal automation algorithms to a particular anticipatory open-loop control technique, gate stroking. The performance of the ideal gate-stroking solution is compared with the performance of an approximate gate-stroking schedule that was generated by imposing practical constraints on the frequency and magnitude of the gate adjustments. Also analyzed were the performance of a nonanticipatory open-loop control scheme and the effect of model parameter uncertainties on the effectiveness of the control. For the test cases, the approximate gate-stroking schedules performed similarly to the ideal schedules. For two of the test cases, delivery performance was similar with and without anticipation, but was substantially different for the other two tests. The quality of the control degraded as a result of errors in model parameters, particularly in cases with incorrect check gate calibrations and submerged gate flows. Results point out the importance of combining open- and closed-loop control measures to improve the overall effectiveness of the control.  相似文献   

3.
Flexible Irrigation Systems: Concept, Design, and Application   总被引:2,自引:0,他引:2  
This paper presents the need, value, and concept of flexible irrigation water supply systems that can deliver water with flexibility in frequency, rate, and duration under the control of the farmer at the point of application using a limited rate arranged-demand or other schedule. It introduces the needed terminology including “congestion”—how much reserve time and capacity is required to assure water delivery at the frequency and rate desired. An illustrative design procedure for the necessary pipeline and reservoir capacities is illustrated. The techniques discussed emphasize the conversion of the economical steady supply canal flows to flexible on-farm usage through the use of service area reservoirs located between the secondary and tertiary systems, and of semiclosed pipelines and/or level-top canals as automated distribution systems which facilitates the farmers’ need for daytime only variable on-farm deliveries to permit optimization of on-farm water management. This improved management is the ultimate source of increased food production after improved crop, land, and water resources have reached their maximum. The coordinated use of return flow systems is described.  相似文献   

4.
A three-dimensional computational fluid dynamics model is used to estimate the hydraulic residence time for a portion of the Wachusett Reservoir in central Massachusetts. The basin under consideration has several major inflows and exhibits complex flow patterns. The basin is modeled using the FLUENT software package with particles used to track travel time in a steady-state flow field. A tetrahedral mesh with over 1.6 million cells is used with accurate depiction of basin bathymetry and inlet and outlet geometries. Modeling is performed to simulate behavior during a period when conditions are isothermal. It is determined that mean hydraulic residence time is 3–4?days; approximately half of what would be expected assuming strictly plug flow. The presence of a primary flow path, large scale eddies and stagnation zones contribute to the faster travel times. Reductions in inflow rates produce increased residence times and significant changes in flow patterns.  相似文献   

5.
A case study is presented on the relation between interflow travel time and reservoir stratification. A simulation model is calibrated and validated for the Wachusett Reservoir in Massachusetts. The Reservoir has a major controlled inflow which traverses the reservoir as an interflow. The model is used with a range of alternate inflow schedules and the resulting travel time of the interflow is examined. The inflow density is within the range of densities found in the reservoir thermocline and the inflow rate is sufficient to maintain a continuous interflow. Under these conditions it is found that a linear relation exists between the average interflow travel time, as measured by the arrival of a specified fraction of interflow water at the outlet, and the degree of stratification, as measured by the maximum difference in reservoir thermocline temperature, at the initiation of the inflow. The results may be useful for operation of the reservoir under study subject to continued validation of the simulation model used.  相似文献   

6.
A two-dimensional (2D) model of unsteady shallow-water flow in surface irrigation was developed to evaluate the influence of field-grading precision on surface irrigation performance. This paper presents field data for verification of this 2D model. No attempt was made here to evaluate irrigation performance. Verification of such models relies on independent estimates of parameters for infiltration and roughness. To accomplish this, water surface elevations were measured at 26 points within a 3 ha level basin. A double-bubbler system was used to obtain relative water depths. Field surveys were used to convert these to water surface elevations and field water depths, from which surface water volumes over time were computed. The infiltration function was determined by matching inflow minus surface volume over time with computed subsurface volume. A value of Manning n (0.05) was found for which advance and water depth hydrographs were both well predicted with the 2D model. Differences in advance for a plane versus undulating field surface were minor, except near the end of advance.  相似文献   

7.
《钢铁冶炼》2013,40(5):407-412
Abstract

A uniform distribution of the blast is an important prerequisite of a balanced blast furnace operation, because the blast is the main source of the hot gases that are needed to preheat, reduce and melt iron ores. The supply of hot gas from the raceways is not necessarily uniform along the furnace periphery, but depends on flow resistances encountered on the individual bustle main tuyere–raceway–raceway boundary routes. A model for this system has been developed in order to study and analyse the effects of changes in tuyere parameters and boundary conditions. Variables such as the total blast volume, blast pressure, tuyere diameter and the combustion degree of injected reductants in the tuyeres can be studied. An online version of the model has also been developed to track how the conditions on the tuyere level change with time in operating blast furnaces.  相似文献   

8.
顶底复合吹炼转炉炼钢法是当下主流的炼钢方法,底部供气元件的种类、支数、排布方式和底吹供气强度直接影响着转炉熔池的混匀效果,合理的流场不仅可以降低生产成本,更能缩短冶炼周期,增加企业效益.基于冷态水模拟以及CFD数值模拟手段各自的研究特点,以某钢厂300 t转炉为原型,将不同底吹条件下熔池的混匀时间、死区以及弱流区体积作...  相似文献   

9.
Unsteady canal flow in an integrated canal-flow–groundwater-flow system is analyzed by solving the coupled equations governing canal flow, groundwater flow and the seepage between them. Analytical solutions are obtained for the coupled system for small water-level disturbances using Fourier analysis methods and complex variables. Dimensionless parameter groups characterizing the aquifer, the canal, and the sediment layer are identified using the governing equations and the solution. The influence in the aquifer and the semipermeable bottom sediment layer due to disturbances in canal flow is studied. The analytical solutions are compared to numerical solutions obtained using the MODFLOW model and the Hydrologic Simulation Engine of the South Florida Regional Simulation Model. Results of the analysis are useful in determining the range of aquifer, sediment, and canal characteristics for which stream-aquifer interaction is important. The results can be used to determine the conditions for which the canal is hydraulically disconnected from the aquifer because of the sediment layer. The analytical solution is useful to understand the propagation characteristics of small-amplitude water-level disturbances in the canal and the aquifer. The characteristics studied include the amplitude decay constant and the speed. The solution can be used to design benchmark problems that can be used to evaluate integrated canal-flow–groundwater-flow models. The results of the study can be used to estimate the space and time steps needed in the canal and the aquifer when simulating stream-aquifer interaction.  相似文献   

10.
Most canals have either long travel times or insufficient in-canal storage to operate on demand. Thus most flow changes must be routed through the canal. Volume compensation has been proposed as a method for easily applying feedforward control to irrigation canals. Software for automated canal management (SacMan) includes both feedforward routing with volume compensation and distant downstream-water-level control. SacMan was implemented on the WM canal of the Maricopa-Stanfield Irrigation and Drainage District, Stanfield, Ariz. Field testing was conducted for a 30 day period during 2004 where more than 50 deliveries to users were made with feedforward control. This paper presents results from some of these field tests and demonstrates the degree of water-level control achievable with combined feedforward (routing)-feedback control.  相似文献   

11.
A model to calculate the quantity and quality of river flows by simulating hydro-chemical processes in soil and the spatial/temporal distribution of irrigation return flows is introduced. By simulating the hydro-chemical processes, the quantity and quality of the deep percolating water can be predicted. The spatial and temporal distribution of the deep percolating water is simulated by constructing a groundwater flow path and calculating the groundwater travel time using response functions. A probabilistic approach was developed to calculate the groundwater travel time taking into account the fact that some irrigated fields have subsurface drainage which shortens travel times. All related hydrological components are integrated into the computation of river flow quantity and quality including groundwater return flow, irrigation tail water, tributary inflow, river diversion, phreatophyte consumption, river channel losses, and river depletion due to pumping. An illustrative example is included to demonstrate the capabilities of the model. The results of this example show that river salinity is lower during the irrigation season and higher during the off season. Due to salts carried by return flows, downstream reaches have higher salinity levels than upstream reaches.  相似文献   

12.
In a companion paper, development of an integrated reservoir-based canal irrigation model (IRCIM) was described. This developed model combines catchment hydrological modeling, reservoir water balance, command hydrological modeling, and a simple canal hydraulic simulation through a rotational irrigation management system, and simulates the whole system as a single unit to ensure equitable distribution of supply to meet the demand if possible, or, to minimize the gap between the supply and demand. In this paper, the developed model was applied to Kangsabati Irrigation Project, West Bengal, India, as a case study. Results showed that IRCIM successfully simulated the operation of the test reservoir after proper calibration and was able to determine better delivery schedules than that actually practiced. The best delivery schedule determined by IRCIM improved the performance of the test irrigation project considerably over the actual delivery schedule for most of the simulation years. Based on these yearly results, a year-independent alternative delivery schedule was also proposed which could be followed mechanically without a manager’s expertise or experience on the particular irrigation project. It was also shown that IRCIM could be used successfully both modulewise or in an integrated way depending on the requirement of the irrigation manager for efficient operation of any reservoir-based canal irrigation systems either for preseason planning of allocation schedules based on hydrologic and hydraulic simulations or for postseason evaluation of the system performance.  相似文献   

13.
钢铁企业物质流网络与能量流网络的协同优化是实现钢铁行业高层次系统节能的关键。钢铁企业在不同工况下煤气的富余量以及蒸汽和电力需求量不同,轧制工序(含加热炉)作为电力和煤气消耗大户,轧制计划的改变会影响能量流网络中能源介质的分配和调度。提出了钢铁流程物质流与能量流协同优化方法,在分时电价的条件下,利用启发式规则调度方法对一天内的轧制单元进行合理的排程,然后用线性规划方法以系统运行能源成本最小为目标函数,建立钢铁企业煤气 蒸汽 电力系统不同工况下的耦合优化调度模型。通过LINGO求解出模型的最优解,得到了轧制单元的最优排程以及不同工况下煤气、蒸汽、电力的最优实时生产调度方案,用于指导实际生产。利用S钢厂实际数据进行实例分析,得出的调度方案可实现煤气 蒸汽 电力系统的最优化分配,系统运行的能源成本降低8.54%,验证了模型的有效性。  相似文献   

14.
This article describes the hydraulic behavior of a mixed water level control hydromechanical gate present in several irrigation canals. The automatic gate is termed “mixed” because it can hold either the upstream water level or the downstream water level constant according to the flow conditions. Such a complex behavior is obtained through a series of side tanks linked by orifices and weirs. No energy supply is needed in this regulation process. The mixed flow gate is analyzed and a mathematical model for its function is proposed, assuming the system is at equilibrium. The goal of the modeling was to better understand the mixed gate function and to help adjust their characteristics in the field or in a design process. The proposed model is analyzed and evaluated using real data collected on a canal in the south of France. The results show the ability of the model to reproduce the function of this complex hydromechanical system. The mathematical model is also implemented in software dedicated to hydraulic modeling of irrigation canals, which can be used to design and evaluate management strategies.  相似文献   

15.
This paper describes an experimental investigation of how friction factors change for spatially varied flow in sloping channels receiving lateral inflow. The results are compared with those of Beij in 1934, and it is concluded that uniform flow resistance coefficients are not always appropriate for spatially varied flow. Moreover, the common technique of assuming a constant friction factor over the entire length of the channel has been found to have little theoretical justification. The method of Keulegan in 1952 for calculating friction factors in spatially varied flow gives a better estimate, but does not explicitly take account of the lateral inflow rate or velocity. Beij’s 1934 experimental data, which was used by Keulegan does not show a systematic variation of friction factor with lateral inflow rate for a constant Reynolds number although this may be due to the low flowrates used. The results of the present study indicate that the friction factor increases with lateral inflow rate for a constant Reynolds number in the experiments that included subcritical and supercritical flow conditions. A method for calculating friction factors which allows for lateral inflow is presented as a precursor to the development of a general method of evaluating friction factors for spatially varied flow with increasing discharge.  相似文献   

16.
The accuracy of tympanometric estimates of ear canal volume was evaluated by testing the following two assumptions on which the procedure is based: (a) ear canal volume does not change when ear canal pressure is varied, and (b) an ear canal pressure of 200 daPa drives the impedance of the middle ear transmission system to infinity so the immittance measured at 200 daPa can be attributed to the ear canal volume alone. The first assumption was tested by measuring the changes in ear canal volume in eight normal subjects for ear canal pressures between +/- 400 daPa using a manometric procedure based on Boyle's gas law. The data did not support the first assumption. Ear canal volume changed by a mean of .113 ml over the +/- 400 daPa pressure range with slightly larger volume changes occurring for negative ear canal pressures than for positive ear canal pressures. Most of the volume change was attributed to movement of the probe and to movement of the cartilaginous walls of the ear canal. The second assumption was tested by comparing estimates of ear canal volume from susceptance tympanograms with a direct measurement of ear canal volume adjusted for changes in volume due to changes in ear canal pressure between +/- 400 daPa. These data failed to support the second assumption. All tympanometric estimates of ear canal volume were larger than the measured volumes. The largest error (39%) occurred for an ear canal pressure of 200 daPa at 220 Hz, whereas the smallest error (10%) occurred for an ear canal pressure of -400 daPa at 660 Hz. This latter susceptance value (-400 daPa at 660 Hz) divided by three is suggested to correct the 220-Hz tympanogram to the plane of the tympanic membrane. Finally, the effects of errors in estimating ear canal volume on static immittance and on tympanometry are discussed.  相似文献   

17.
Alternative Delivery Scheduling for Improved Canal System Performance   总被引:1,自引:0,他引:1  
Alternative delivery scheduling approaches intended to overcome the problem of low efficiency in Indian irrigation projects are presented. The features of the historical delivery schedules in the Right Bank Main Canal system of Kangsabati irrigation project, located in the state of West Bengal, India, have been studied, and nine modified schedules of varied rate rotation (variable discharge, constant duration, and constant frequency) prepared. Daily water balance simulation of the command area in the Kharif (rainy) season has been used to compare the performance of alternate schedules. An alternate schedule with three irrigations of 20 to 21 days’ duration, followed by 20 days of canal closure after each irrigation, was found to perform the best. The proposed alternate schedule results in a better match between supply and demand and results in 13% water saving when compared to the existing schedules. The irrigation periods of this schedule cover the expected dry spells and critical rice growth stage. An added advantage of the proposed schedule is an improvement in the reliability of supply, which will encourage farmers to invest more on other inputs resulting in enhanced water use efficiency and improved yields.  相似文献   

18.
Multiple-Model Optimization of Proportional Integral Controllers on Canals   总被引:2,自引:0,他引:2  
Canals or open channels that convey water often consist of pools in series separated by control structures. Successful implementation of water-level control with these structures using decentralized proportional integral (PI) controllers depends heavily on the tuning of the control parameters. These parameters are hard to determine due to the interactions between the pools and the varying flow conditions in the canal. This paper presents a procedure for tuning any linear controller (including decentralized PI controllers) that guarantees stability of the controlled canal. It minimizes a cost function that weights the water-level deviations from the target level against control efforts at both low- and high-flow conditions. The procedure is tested on a model of the Umatilla Stanfield Branch Furnish Canal in Oregon. The tests show the capability of the procedure to deal with the pool interactions. The results of a realistic turnout schedule applied to the controlled canal show the high performance of the controllers (small water-level deviations in all pools) over varying flow conditions.  相似文献   

19.
Physically based modeling of the coupled one-dimensional surface and two-dimensional (2D) subsurface flow during furrow irrigation advance often causes numerical instabilities and nonconvergence problems. This is particularly the case for low irrigation advance rates when infiltration consumes a predominant part of the inflow volume. The proposed furrow advance phase model (FAPS) further develops the concepts of a previous study. An analytical zero-inertia surface flow model is iteratively coupled with the 2D subsurface water transport model HYDRUS-2. In contrast to the previous study, the flow domain is discretized using fixed space increments and the resulting set of nonlinear flow equations is solved using the Newton method. The complexity of the model was reduced by process adequate simplifications. FAPS exhibited better convergence, numerical stability, and less computational time than the original fixed time interval solution. The new solution converged rapidly for a number of model tests with various inflow rates including runs with very slow irrigation advance. Simulation model predictions agree very well with advance times measured in laboratory and field tests.  相似文献   

20.
With the aid of the finite element method, a lot of mechanical and thermal phenomena in forming processes can be analysed successfully. However, for industrial purposes the necessary computational time for complex processes is often not acceptable. Many researches have attempted to reduce the computational time which is needed to find a solution. In this paper, new algorithms are described which make use of the existing similarity in some forming processes, especially incremental forming process. Incremental forming processes are characterised by very small deformation zones and approximate self similarity. The described algorithms are based on the transformation and interpolation of already computed solutions. The results from transformation and interpolation are verified by means of some physical constraints. If the results pass the latter check, they will be archived as solution. Consequently, at this time step, no iterative computation will be accomplished by the mechanical solver. Then the calculations by the thermo solver are accomplished conventionally in dependence on the archived mechanical results. With the help of these algorithms, the number of iterations will obviously be reduced and the results will be reasonably acceptable. In this paper, all details are described and two forming processes as validation occur to depict the advantages of this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号