首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amorphous [Al-Si-O] coatings were deposited on aluminum alloy by plasma electrolytic oxidation (PEO). The process parameters, composition, micrograph, and mechanical property of PEO amorphous coatings were investigated. It is found that the growth rate of PEO coatings reaches 4.44μm/min if the current density is 0.9 mA/mm^2. XRD results show that the PEO coatings are amorphous in the current density range of 0.3 - 0.9 mA/mm^2. EDS results show that the coatings are composed of O, Si and A1 elements. SEM results show that the coatings are porous. Nano indentation results show that the hardness of the coatings is about 3 - 4 times of that of the substrate, while the elastic modulus is about the same with the substrate. Furthermore, a formation mechanism of amorphous PEO coatings was proposed.  相似文献   

2.
Plasma electrolytic oxidation of a cast A356 aluminum alloy was carried out in aluminate electrolytes to develop wear and corrosion resistant coatings. Different concentrations of 2, 16 and 24 g/L NaAlO2 solutions and a silicate electrolyte (for comparison) were employed for the investigation. Wear performance and corrosion resistance of the coatings were evaluated by WC (tungsten carbide) ball-on-flat dry sliding tests and electrochemical methods, respectively. The results show that the coating formed for a short duration of 480 s in 24 g/L NaAlO2 solution generated the best protection. The coating sustained 30 N load for sliding time of 1800 s, showing very low wear rate of ~4.5×10?7 mm3/(N·m). A low corrosion current density of ~8.81×10?9 A/cm2 was also recorded. Despite low α-Al2O3 content of the coating, the compact and nearly single layer nature of the coating guaranteed the excellent performances.  相似文献   

3.
Thick and hard ceramic coatings were fabricated on A356 aluminum alloy by using plasma electrolytic oxidation(PEO) technique.The microstructure and phase composition of the PEO coatings were examined by using SEM and XRD method.It is found that the PEO coatings are mainly composed of crystalline α-Al2O3 and mullite.The dry sliding wear test of PEO coatings were carried out on a ring-on-ring wear machine.Results shows that there is hardly no wear loss of polished PEO coatings while the wear rate of uncoated aluminum alloy is 4.3×10-5 mm3·(N·m)-1 at a speed of 0.52 m·s-1 and a load of 40 N.  相似文献   

4.
This paper is concerned with the surface modification of titanium by the PEO method (plasma electrolytic oxidation) in the solutions which contain Ca, P, Si and Na. The chemical composition of the thus formed surface layers was examined by XPS and EDS. The morphology of the surface was observed by SEM. The phase composition was determined by X-ray diffraction (XRD). The adhesive strength of the oxide layers was evaluated by the scratch-test. The corrosion resistance was determined in a simulated body fluid (SBF) at a temperature of 37 °C by electrochemical methods for various exposure times.The oxide layers obtained were porous and enriched with Ca, P, Si and Na and their properties depended on the electrolyte solution and the parameters of the oxidation process. The results of the electrochemical examinations show that the surface modification by PEO does not worsen the corrosion resistance of titanium after a 13 h exposure in SBF. The electrochemical impedance spectroscopy (EIS) results indicate that the surface layers have a complex structure and that their electric properties undergo changes during long-term exposures in SBF.  相似文献   

5.
在2A12铝合金表面制备了微弧氧化膜层,按照国家军用标准霉菌测试方法对微弧氧化膜层的耐腐蚀性能进行了测试,通过扫描电镜(SEM)、X射线衍射分析(XRD)对铝合金基体及微弧氧化膜层霉菌腐蚀前后的微观结构、相组成进行了表征。结果表明,未经过微弧氧化处理的铝合金表面有少量的霉菌生长,表面产生了一定数量的点蚀坑,长霉等级为1级。经过微弧氧化处理试样表面未发现霉菌生长,长霉等级为0级。微弧氧化处理可以有效提高铝合金表面耐霉菌腐蚀性能,扩大其应用范围。  相似文献   

6.
Plasma electrolytic oxidation (PEO) was applied using a pulsed unipolar waveformto produce Al2O3−TiO2 composite coatings from sol electrolytic solutions containing colloidal TiO2 nanoparticles. The sol solutions were produced by dissolving 1, 3, and 5 g/L of potassium titanyl oxalate (PTO) in a silicate solution. Scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, and Raman spectroscopy were applied to characterizing the coatings. Corrosion behavior of the coatings was investigated using polarization and impedance techniques. The results indicated that TiO2 enters the coating through all types of micro-discharging and is doped into the alumina phase. The higher level of TiO2 incorporation results in the decrease of surface micro-pores, while the lower incorporation shows a reverse effect. It was revealed that the higher TiO2 content makes a more compact outer layer and increases the inner layer thickness of the coating. Electrochemical measurements revealed that the coating obtained from the solution containing 3 g/L PTO exhibits higher corrosion performance than that obtained in the absence of PTO. The coating produced in the absence of PTO consists of γ-Al2O3, δ-Al2O3 and amorphous phases, while α-Al2O3 is promoted by the presence of PTO.  相似文献   

7.
铝合金的微弧电解氧化处理起源于上世纪50年代中期,现在包括俄罗斯在内的世界各主要国家与地区都在对此技术进行研发,在推广应用方面取得了一定的成效.微弧氧化处理膜具有硬度高、抗磨性强、耐腐蚀性强、耐热冲击、介电性强等一系列优点,但处理时的电压高、电流大,能耗高,如不在节能降耗方面有所突破,很难大面积推广应用.微弧氧化处理槽液不含铬等重金属,处理时也不排放温室气体及其他污染物,是一种环境友好型表面处理工艺.  相似文献   

8.
钛合金长期植入体内依然存在磨损和腐蚀的问题,因此钛合金表面改性的目的就是提高其表面耐蚀性、耐磨性并赋予生物活性.本文在3种不同的电解液中,采用等离子电解氧化技术在TA1纯钛表面制备含有Ca、P的氧化钛多孔复合陶瓷层.研究了不同电解液中,改变工艺参数对纯钛表面陶瓷层平均厚度和生长机制的影响.采用扫描电镜和能谱分析了电流密度改变时,3种不同电解液中生成复合陶瓷膜的表截面形貌以及成分.结果表明,相同的电流密度,在电解液B中,陶瓷膜初始击穿电位最大,电解液C中陶瓷膜初始击穿电位值最小.正向电流为16 A/dm2时,在电解液A中陶瓷膜表面出现粉末状团聚物,在电解液B和C中,没有粉末状团聚物出现.无论是工艺参数还是电解液成分,对纯钛生物陶瓷膜的生长过程与组织结构都产生很大的影响,适当控制可制备所需的功能陶瓷膜.  相似文献   

9.
采用电化学方法研究锆合金Zr-4在添加不同Cu2+浓度的0.5 mol/L NaCl溶液或0.5 mol/L Na2SO4中的腐蚀行为,探讨不同浓度Cu2+对Zr-4合金腐蚀性能的影响,同时,在10 g/L Na2SiO3.9H2O+10 g/L Na4P2O7.10H2O混合溶液中对Zr-4合金进行等离子电解氧化处理,并用极化曲线技术研究膜层的防护能力。结果表明:Cu2+能使Zr-4合金自腐蚀电位正移,降低极化曲线上钝化区的宽度,使得合金的抗孔蚀能力降低,腐蚀电流密度增加;在硫酸钠溶液中,Cu2+的添加没有使合金产生明显的孔蚀,这表明Zr-4合金的抗孔蚀能力下降是Cu2+和Cl共同作用的结果;等离子电解氧化处理能够大幅度提高Zr-4合金的抗孔蚀能力。  相似文献   

10.
The effect of potassium pyrophosphate in the electrolyte on plasma electrolytic oxidation (PEO) process for AZ91 Mg alloy was investigated. The morphologies and chemical compositions of the coating layer on the AZ91 Mg alloy were evaluated and corrosion resistance was also estimated by potentiodynamic polarization analysis. The coating layer on AZ91 Mg alloy coated from the Bath 2 containing 0.03 mol/L of potassium pyrophosphate for 360 s exhibited considerably dense structure and contained 11%–18% (mass fraction) of phosphorous. The higher content of phosphorous of coating layer coated from Bath 2 could be detected at the bottom of oxide layer, which strongly implied that the phosphorous ion might be concentrated at the barrier layer. Corrosion potential of coating layer of AZ91 Mg alloy increased and corrosion current density decreased with increasing the concentration of potassium pyrophosphate. The polarization resistance (Rp) of coating layer of AZ91 Mg alloy coated from Bath 2 was 4.65×107 Ω/cm2, which was higher than that (Rp=3.56×104 Ω/cm2) of the sample coated from electrolyte without potassium pyrophosphate. The coating layer coated from Bath 2 containing 0.03 mol/L potassium pyrophosphate exhibited the best corrosion resistance.  相似文献   

11.
12.
13.
采用球盘接触形式,在50 μm和150 μm位移振幅条件下,研究了载荷(60 N、40 N和20 N)对TC21钛合金及其表面微弧氧化(PEO)涂层切向微动磨损性能的影响。结果显示,随着位移振幅的增大和载荷的减小,TC21钛合金和PEO涂层的微动区域均由部分滑移区向滑移区转变。在部分滑移区,两种材料沿微动方向的磨痕宽度随载荷的减小而减小。虽均未出现明显的材料损失,但TC21钛合金边缘微滑区存在微裂纹的萌生和扩展,其程度随载荷的减小而加重,而微动对PEO涂层只起到了平滑作用。在滑移区,两种材料的磨痕宽度随载荷的减小而增大,且均存在局部磨损。磨损程度随振幅的增大和载荷的减小而加深。其中,PEO涂层的最大磨痕深度小于TC21钛合金,显示出更好的抗微动磨损性能。  相似文献   

14.
The discharge mechanism of the plasma electrolytic oxidation (PEO) process in different electrolytes was investigated by examining the variation of the optical emission spectra (OES). The spectrum of active species existed in the bubble layer. The bubble layer was initially broken down, followed by the breakdown of the dielectric barrier layer. Breakdown is the initial stage of discharge. A micro-discharge formation model, which assumes that the discharge ignition in the bubble layer developed at the oxide/electrolyte interface, was proposed. The active plasma species that appeared in different electrolytes during the PEO process were also studied. The appearance order of the excited active plasma species depended on the energy that the orbit transition of the species needed, but was not related to the anion concentration in the electrolyte. The anions in the electrolyte, except the OH, also had little influence on the composition of the active plasma species during the PEO process. The active plasma species were mainly composed of metal atoms, metal cations, and gases produced by water decomposition. The electron temperature of the excited hydrogen was between 6 × 103 and 3 × 104 K. The high temperature provided the possibility of ceramic film melting and sintering. The source and transition of the active plasma species were also studied. They were found to undergo dissociation, ionization, and excitation processes.  相似文献   

15.
The aim of this work is to investigate microstructure, corrosion resistance characteristics and nanohardness of the oxide layer on AZ91 Mg alloy by applying different voltage with KMnO4 contained solution. There are lots of closed pores that are filled with another oxide compound compared with the typical surface morphology with pore coated until 350 V of coating voltage. The thickness of oxide layer increases with increasing coating voltage. The oxide layer formed on AZ91 Mg alloy in electrolyte with potassium permanganate consists of MgO and Mn2O3. Corrosion potential of the oxide layer on AZ91 Mg alloy obtained at different plasma electrolytic oxidation(PEO) reaction stages increases with increasing coating voltage. The corrosion resistance of AZ91 Mg alloy depends on the existence of the manganese oxide in the oxide layer. The inner barrier layer composed of the MgO and Mn2O3 may serve as diffusion barrier to enhance the corrosion resistance and may partially explain the excellent anti-corrosion performance in corrosion test. Nanohardness values increase with increasing coating voltage. The increase in the nanohardness may be due to the effect of manganese oxide in the oxide layer on AZ91 Mg alloy coated from electrolyte containing KMnO4.  相似文献   

16.
1 Introduction Plasma electrolytic oxidation (PEO) is a new technology in surface engineering[1- 8]. A deep under- standing of discharge property during the process will be veryhelpful for revealing the mechanism of PEO and for developing new surface modi…  相似文献   

17.
18.
Plasma electrolytic oxidation(PEO) of cast A356 aluminum alloy was carried out in 32 g/L NaAlO2 with the addition of different concentrations of NaOH. The stability of the aluminate solution is greatly enhanced by increasing the concentration of NaOH. However, corresponding changes in the PEO behaviour occur due to the increment of NaOH concentration. Thicker precursor coatings are required for the PEO treatment in a more concentrated NaOH electrolyte. The results show that the optimal NaOH concentration is 5 g/L, which improves the stability of storage electrolyte to about 35 days, and leads to dense coatings with high wear performance (wear rate: 4.1×10−7 mm3·N−1·m−1).  相似文献   

19.
20.
在TC4合金表面制备4种典型等离子体电解氧化(PEO)涂层,研究电解质组成对PEO涂层腐蚀行为和摩擦学性能的影响。结果表明,PEO涂层的腐蚀行为和摩擦学性能与电解质成分密切相关。在含NaH2PO2的电解液中制备的PEO涂层由于内氧化膜较致密而具有最好的耐蚀性能,而在含NaAlO2的电解液中制备的PEO涂层由于含有Al2O3而具有最好的摩擦学性能。为制备具有良好耐蚀性和耐磨性的PEO涂层,以NaH2PO2和NaAlO2为电解液主要成分制备了复合PEO涂层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号