首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The current Modular Helium Reactor (MHR) fuel cycle uses fissile LEU (19.8 wt% U-235) and depleted uranium in separate TRISO particles, in a single fuel rod within a graphite matrix. The TRISO particle volume packing fraction (PF) in the fuel rods is 29%, of which the LEU particle PF is 62%. The lifetime between refuelings is about 476 effective full power days (EFPD). In this paper we assess the possibility of replacing the depleted uranium TRISO particles with thorium TRISO particles, and evaluate the impact of such replacement on fuel cycle length. A preliminary scoping study was performed to determine the most promising fuel rod/zoning configurations. The scoping study indicates that there is advantage to separating the thorium TRISO particles from the LEU particles at the fuel rod level instead of mixing them within a single rod. An axial checkerboard distribution of the fuel rods where all uranium and all thorium rods are interchangeable along the axial direction within the graphite block is the most promising configuration that was identified in this study and can be lead to a fuel cycle length extension of 50-80% relative to the current design, with only a modest increase in the fissile material loading (15-20%). To this advantage can be added the benefit of a significant reduction in nuclear waste and in health risk. This study also lays the foundation for improving the fuel rod arrangement within the graphite block and the graphite blocks within the entire reactor core. The analysis is limited to a once - through fuel cycle based on in situ fissioning of the U-233, without further separation and reprocessing. The preliminary heat transfer analysis indicates that the maximum temperature in the fuel will be raised by about 10-15% over that of current MHR design.  相似文献   

2.
Thorium (Th) oxide fuel offers a significant advantage over traditional low-enriched uranium and mixed uranium/plutonium oxide (MOX) fuel irradiated in a Light Water Reactor. The benefits of using thorium include the following: 1) unlike depleted uranium, thorium does not produce plutonium, 2) thorium is a more stable fuel material chemically than LEU and may withstand higher burnups, 3) the materials attractiveness of plutonium in Th/Pu fuel at high burnups is lower than in MOX at currently achievable burnups, and 4) thorium is three to four times more abundant than uranium. This paper quantifies the irradiation of thorium fuel in existing Light Water Reactors in terms of: 1) the percentage of plutonium destroyed, 2) reactivity safety parameters, and 3) material attractiveness of the final uranium and plutonium products. The Monte Carlo codes MCNP/X and the linkage code Monteburns were used for the calculations in this document, which is one of the first applications of full core Monte Carlo burnup calculations. Results of reactivity safety parameters are compared to deterministic solutions that are more traditionally used for full core computations.Thorium is fertile and leads to production of the fissile isotope 233U, but it must be mixed with enriched uranium or reactor-/weapons-grade plutonium initially to provide power until enough 233U builds in. One proposed fuel type, a thorium-plutonium mixture, is advantageous because it would destroy a significant fraction of existing plutonium while avoiding the creation of new plutonium. 233U has a lower delayed neutron fraction than 235U and acts kinetically similar to 239Pu built in from 238U. However, as with MOX fuel, some design changes may be required for our current LWR fleet to burn more than one-third a core of Th/Pu fuel and satisfy reactivity safety limits. The calculations performed in this research show that thorium/plutonium fuel can destroy up to 70% of the original plutonium per pass at 47 GWd/MTU, whereas only about 30% can be destroyed using MOX. Additionally, the materials attractiveness of the final plutonium product of irradiated plutonium/thorium fuel is significantly reduced if high burnups (∼94 GWD/MTU) of the fuel can be attained.  相似文献   

3.
Thorium can supplement the current limited reserves of uranium. In current study, analyses are performed for thorium based fuels in thermal neutron spectrum Super Critical Water Reactor (SCWR). Thorium based fuels are studied in two roles. First role being replacement of conventional uranium dioxide fuel while the other being burner of Reactor Grade Plutonium (RG-Pu) in thermal neutron spectrum SCWR. Coupled neutron physics/thermal hydraulics analyses are performed due to large density variation of coolant over the active fuel length. Analyses reveal that thorium-uranium MOX fuels lead to smaller burnup values as compared to equivalent enriched uranium dioxide but possess the advantage of smaller excess reactivity at Beginning of Life (BOL). This can lead to savings in the form of Burnable Poisons (BP). Smaller fuel average temperature values are obtained for thorium-uranium MOX fuels as compared to uranium dioxide fuel option. Coated fuel option utilizing mixed thorium-uranium mono nitride fuel can help further decrease fuel average temperature values for thorium based fuels. U-233, produced in thorium uranium fuels, contribution towards fission energy produced is smaller as compared to plutonium produced in conventional uranium dioxide fuel. In terms of proliferation resistance, approximately 40% less quantity of plutonium is produced for thorium-uranium MOX fuels (for studied compositions) as compared to equivalent enriched uranium dioxide fuel. But, there is not much difference between the discharged plutonium vector compositions. Thorium–Plutonium based fuels lead to significantly harder spectrum which results in larger spread in radial power density and eventually causes larger values for thermal hydraulic parameters like fuel and clad temperature. Due to almost no production of plutonium, thorium based fuels can be a very good option to burn RG-Pu in thermal spectrum SCWR. Thorium based fuels destroyed almost 74% initially loaded RG-Pu as compared to 60% for uranium based MOX. HEU based thorium fuels can be a very good option for replacing conventional uranium dioxide fuels as very small quantities of plutonium is produced. This option, although, has regulatory issues due to use of HEU material.  相似文献   

4.
利用ORIGENS程序对压水堆钍基乏燃料的特性进行分析,揭示了钍基乏燃料在放射性毒性、衰变热、γ射线等方面的特性,相关结果可为钍基乏燃料的贮存、后处理和地质处置提供必要的参考。研究的乏燃料是压水堆内钍-铀增殖循环堆芯设计方案中的4种,包括UOX(铀氧化物)、MOX(钚铀混合氧化物)、PuThOX(钚钍混合氧化物)和U3ThOX(工业级233U-钍混合氧化物)。研究结果表明:1)由于超铀核素的含量极低,在卸料后1 000年内,U3ThOX的放射性毒性显著低于超铀核素含量高的乏燃料;2)由于232U衰变链中208Tl的贡献,钍基乏燃料中2.6 MeV能量附近的γ射线强度明显高于铀基乏燃料,而这一能量附近的γ射线强度在卸料后约10年达到局部峰值,所以,钍基乏燃料的后处理最好避开此时间。  相似文献   

5.
This research is focused on using Thorium-Plutonium MOX fuel in the inner fuel pins of the CANDU fuel bundles for plutonium incineration and reduction of uranium demand and to reduce coolant void reactivity. The delayed neutron fraction and the power distribution amongst the fuel elements of the fuel bundle have been considered as main safety parameters.The 700 MWe Advanced CANDU Reactor (ACR-700) was selected as a case study. The inner eight UO2 fuel pins of the ACR-700 fuel bundle are replaced by Thorium-Plutonium MOX fuel pins in the proposed design with 3% reactor grade PuO2. This amount represents 23.4 w/o of the fuel in the bundle. The outer two fuel rings (35 pins) enrichment is reduced from 2.1 w/o U-235 to 2 w/o U-235. The simulation using MCNP6 showed that about 27% reduction of uranium demand can be achieved. The proposed fuel bundle eliminate the use of burnable poisons in the central pin that was used for negative coolant void reactivity and more reduction in the coolant void reactivity was achieved (about 3.5 mk less than the reference fuel bundle). The power distribution throughout the fuel bundle is more flat in the proposed fuel bundle. Use of this fuel bundle reduces the delayed neutron fraction from 540 pcm in the reference case to 480 pcm in the proposed case.  相似文献   

6.
《Annals of Nuclear Energy》2005,32(16):1719-1749
Preliminary studies have been performed on operation of the gas turbine-modular helium reactor (GT-MHR) with a thorium based fuel. The major options for a thorium fuel are a mixture with light water reactors spent fuel, mixture with military plutonium or with with fissile isotopes of uranium. Consequently, we assumed three models of the fuel containing a mixture of thorium with 239Pu, 233U or 235U in TRISO particles with a different kernel radius keeping constant the packing fraction at the level of 37.5%, which corresponds to the current compacting process limit. In order to allow thorium to act as a breeder of fissile uranium and ensure conditions for a self-sustaining fission chain, the fresh fuel must contain a certain quantity of fissile isotope at beginning of life; we refer to the initial fissile nuclide as triggering isotope. The small capture cross-section of 232Th in the thermal neutron energy range, compared to the fission one of the common fissile isotopes (239Pu, 233U and 235U), requires a quantity of thorium 25–30 times greater than that one of the triggering isotope in order to equilibrate the reaction rates. At the same time, the amount of the triggering isotope must be enough to set the criticality condition of the reactor. These two conditions must be simultaneously satisfied. The necessity of a large mass of fuel forces to utilize TRISO particles with a large radius of the kernel, 300 μm. Moreover, in order to improve the neutron economics, a fuel cycle based on thorium requires a low capture to fission ratio of the triggering isotope. Amid the common fissile isotopes, 233U, 235U and 239Pu, we have found that only the uranium nuclides have shown to have the suitable neutronic features to enable the GT-MHR to work on a fuel based on thorium.  相似文献   

7.
The use of thorium in pressurized water reactor fuel assemblies is investigated in this paper. The novelty of the reported work is to study a fuel design primarily intended to control the excess of reactivity at beginning of life, and flatten the intra-assembly power distribution rather than converting fertile Th-232 into fissile U-233. The fuel assembly is a traditional 17 × 17 pressurized water reactor fuel design. The majority of the fuel pins contain a mixture of uranium and thorium oxides, while a few fuel pins contain a mixture between uranium and gadolinium oxides. The calculation were performed by two-dimensional transport calculations with the Studsvik Scandpower CASMO-4E code in order to determine the main neutronic properties of the new fuel design, compared with the traditional uranium-based fuel assembly containing gadolinium used as reference. The majority of the neutronic properties of the uranium-thorium-based fuel assembly were similar to the reference fuel assembly. The Doppler and the moderator temperature coefficients of reactivity were found to be appreciably more negative in the uranium-thorium-based design, but still within acceptable limits. One advantage of this new uranium-thorium-based design is a reduction of the pin peak power at beginning of life, because of smaller amount of gadolinium being used. This is important from an operational and safety viewpoint, since the margin to departure from nucleate boiling becomes larger. Consequently, this new type of thorium-based fuel assembly shows advantageous properties for use in power-uprated cores.  相似文献   

8.
When spent Light Water Reactor fuels are processed by the standard Purex method of reprocessing, plutonium (Pu) and uranium (U) in spent fuel are obtained as pure and separate streams. The recovered Pu has a fissile content (consisting of 239Pu and 241Pu) greater than 60% typically (although it mainly depends on discharge burnup of spent fuel). The recovered Pu can be recycled as mixed-oxide (MOX) fuel after being blended with a fertile U makeup in a MOX fabrication plant. The burnup that can be obtained from MOX fuel depends on: (1) isotopic composition of Pu, which is closely related to the discharge burnup of spent fuel from which Pu is recovered; (2) the type of fertile U makeup material used (depleted U, natural U, or recovered U); and (3) fraction of makeup material in the mix (blending ratio), which in turn determines the total fissile fraction of MOX. Using the Non-linear Reactivity Model and the code MONTEBURNS, a step-by-step procedure for computing the total fissile content of MOX is introduced. As was intended, the resulting expression is simple enough for quick/hand calculations of total fissile content of MOX required to reach a desired burnup for a given discharge burnup of spent fuel and for a specified fertile U makeup. In any case, due to non-fissile (parasitic) content of recovered Pu, a greater fissile fraction in MOX than that in fresh U is required to obtain the same burnup as can be obtained by the fresh U fuel.  相似文献   

9.
Today's nuclear technology has principally been based on the use of fissile U-235 and Pu-239. While the natural thorium isotope Th-232 can finally be transformed to a fissile U-233 nucleus following a thermal neutron capture reaction, the existence of thorium in the nature and its potential use in the nuclear technology were not unfortunately into account with a sufficient importance. This was probably because of the geological availability of natural resources of thorium and uranium. Global distributions of thorium and uranium reserves clearly indicate that in general some developed countries such as the USA, Canada, Australia have considerable uranium reserves and contrarily only some developing countries such as Brazil, Turkey, India, Egypt have considerable thorium reserves as being totally about 70 % of the global reserve. All technical parameters obtained from the studies on thorium fuel cycle during the last 50 years indicate that thorium fuel cycle can be used in most of reactor types already operated. In addition, accelerated-driven hybrid systems promise to use the thorium based nuclear fuels. So, thorium will probably be a nuclear material much more valuable than uranium in the future. For this reason, all developing countries having thorium reserves should focus their technological attentions to the evaluation of their national thorium resources like in the case of India. In this paper a brief story on the studies of thorium and its potential use in the future energy production technology have been summarized.  相似文献   

10.
压水堆平衡堆芯钍铀燃料循环初步研究   总被引:1,自引:0,他引:1  
建立WIMSD5-SN2-CYCLE3D和CASMO3-CYCLE3D物理分析系统作为钍铀燃料循环研究工具.以大亚湾第1机组压水堆为参考堆型,不改变反应堆栅元、组件和堆芯的结构与几何尺寸,设计出含36根钍棒、4.2#5U富集度的新型含钍组件,并对含钍组件和3.2%富集度的铀组件进行中子学计算和分析.模拟并分析了大亚湾压水堆12个月换料从初始循环到铀钚平衡循环的换料过程.再从平衡铀堆芯出发,逐步加入含钍组件代替铀组件,对铀钚平衡循环到钍铀平衡循环的换料过程进行了模拟与分析.计算结果表明:钍铀平衡循环比铀钚平衡循环每天节省裂变核素质量约18.4%,并减少了长寿命放射性核废料的产生.不利因素是使得循环长度减少90EFPD,缩短了换料周期,增加运行费用,并给燃料管理、安全控制以及乏燃料的处理带来困难.建议提高组件的235U富集度,在压水堆上进行钍利用研究.  相似文献   

11.
为研究钍铀燃料在CANDU6堆中的应用,采用DRAGON/DONJON程序,对使用离散型钍铀燃料37棒束组件的CANDU6堆进行时均堆芯分析。结果表明,组件采用235U富集度为2.5%的铀棒以及第1、2、3圈布置钍棒的37棒束组件,堆芯在8棒束换料、3个燃耗分区的方案下,组件的冷却剂空泡反应性较使用天然铀的37棒束组件(NU-37组件)与采用混合钍铀元件棒的37棒束组件更负;堆芯最大时均通道/棒束功率满足小于6700?kW/860?kW的限值;燃料转化能力比采用NU-37组件时更高;卸料燃耗可到达13400?MW·d/t(U)。研究表明,所设计的离散型钍铀燃料37棒束组件可用于现有CANDU6堆芯,且无需对堆芯结构及控制机构作重大改造;燃料组件和堆芯设计方案可为钍铀燃料在CANDU6堆芯的应用提供参考。   相似文献   

12.
In this paper the production and destruction, as well as the radiotoxicity of plutonium and minor actinides (MA) obtained from the multi-recycling of boiling water reactors (BWR) fuel are analyzed. A BWR MOX fuel assembly, with uranium (from enrichment tails), plutonium and minor actinides is designed and studied using the HELIOS code. The actinides mass and the radiotoxicity of the spent fuel are compared with those of the once-through or direct cycle. Other type of fuel assembly is also analyzed: an assembly with enriched uranium and minor actinides; without plutonium. For this study, the fuel remains in the reactor for four cycles, where each cycle is 18 months length, with a discharge burnup of 48 MWd/kg. After this time, the fuel is placed in the spent fuel pool to be cooled during 5 years. Afterwards, the fuel is recycled for the next fuel cycle; 2 years are considered for recycle and fuel fabrication. Two recycles are taken into account in this study. Regarding radiotoxicity, results show that in the period from the spent fuel discharge until 1000 years, the highest reduction in the radiotoxicity related to the direct cycle is obtained with a fuel composed of MA and enriched uranium. However, in the period after few thousands of years, the lowest radiotoxicity is obtained using the fuel with plutonium and MA. The reduction in the radiotoxicity of the spent fuel after one or two recycling in a BWR is however very small for the studied MOX assemblies, reaching a maximum reduction factor of 2.  相似文献   

13.
本文报道了中国科学院上海原子核研究所在开展钍铀燃料循环研究方面的进展和取得的成果。这些研究主要为克级量纯~(253)U的提取、钍基燃料后处理技术研究、新的铀钍萃取体系的研究、钍铀镤分离和分析方法研究、中子辐照ThO_2时产生有关核素的累积与中子积分通量和中子能谱的关系、钍的零功率试验等。本文还对钛的利用进行了评估和展望。  相似文献   

14.
One of the major benefits of the Gas Turbine-Modular Helium Reactor is the capability to operate with several different types of fuel; either Light Water Reactors waste, military plutonium or thorium represent valid candidates as possible types of fuel. In the present studies, we performed a comparison of various nuclear data libraries by the Monte Carlo Continuous Energy Burnup Code MCB applied to the Gas Turbine-Modular Helium Reactor operating on a thorium fuel. A thorium fuel offers valuable attractive advantages: low fuel cost, high reduction of actinides production and the possibility to enable the reactor to act as a breeder of fuel by the neutron capture of fertile 232Th. We evaluated the possibility to mix thorium with small quantities, about 3% in atomic composition, of 239Pu, 233U and 235U. The mass of thorium must be much larger than that one of plutonium or uranium because of the low capture cross section of thorium compared to the fission one of the fissile nuclides; at the same time, the quantity of the fissile isotopes must grant the criticality condition. These two simultaneous constraints force to load a huge mass of fuel in the reactor; consequently, we propose to allocate the fuel in TRISO particles with a large radius of the kernel. For each of the three different fuels we calculated the evolution of the fuel composition by the MCB code equipped with five different nuclear data libraries: JENDL-3.3, JENDL-3.2, JEFF-3, JEF-2.2 and ENDF/B.  相似文献   

15.
《Annals of Nuclear Energy》2002,29(16):1953-1965
The use of uranium–plutonium mixed oxide fuel (MOX) in light water reactors (LWR) is nowadays a current practice in several countries. Generally 1/3 of the reactor core is loaded with MOX fuel assemblies and the other 2/3 with uranium assemblies. Nevertheless the plutonium utilization could be more effective if the full core could be loaded with MOX fuel. In this paper the design of a boiling water reactor (BWR) core fully loaded with an overmoderated MOX fuel design is investigated. The design of overmoderated BWR MOX fuel assemblies based on a 10×10 lattice are developed, these designs improve the neutron spectrum and the plutonium consumption rate, compared with standard MOX assemblies. In order to increase the moderator to fuel ratio two approaches are followed: in the first approach, 8 or 12 fuel rods are replaced by water rods in the 10×10 lattice; in the second approach, an 11×11 lattice with 24 water rods is designed with an active fuel length very close to the standard MOX assembly. The results of the depletion behavior and the main steady state core parameters are presented. The feasibility of a full core loaded with the 11×11 overmoderated MOX fuel assembly is verified. This design take advantage of the softer spectrum comparable to the 10×10 lattice with 12 water rods but with thermal limits comparable to the standard MOX fuel assembly.  相似文献   

16.
The performance of natural uranium and thorium-fueled fast breeder reactors (FBRs) for producing 233U fissile material, which does not exist in nature, is investigated. It is recognized that excess neutrons from FBRs with good neutron economic characteristics can be efficiently used for producing 233U. Two distinct metallic fuel pins, one with natural uranium and another with natural thorium, are loaded into a large sodium-cooled FBR. 233U and the associated-U isotopes are extracted from the thorium fuel pins. The FBR itself is self-sustained by plutonium produced in the uranium fuel pins. Under the equilibrium state, both uranium and thorium spent fuels are periodically discharged with a certain discharge rate and then separated. All discharged fission products are removed and all discharged actinides are returned to the FBRs except the discharged uranium utilized for fresh fuel of the other thorium-cycled reactors. 233U-production rate of the FBRs as a function of both the uranium–thorium fuel pins fraction in the core and the discharge fuel burnup is estimated. The result shows that larger fraction of uranium pins is better for the FBR criticality while larger fraction of thorium fuel pins and lower fuel burnup give higher 233U production rate.  相似文献   

17.
The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR) has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U) is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor actinide and plutonium waste inventories are reduced and hence waste radio-toxicities and decay heats are up to a factor of 20 lower after 103 years. Two innovative fuel types named S90 and S20, ThO2 mixed with 90% and 20% enriched UO2 respectively, are compared as an alternative to standard uranium oxide (UOX) and uranium/plutonium mixed oxide (MOX) fuels at the longest EPR fuel discharge burn-ups of 65 GWd/t. Fissile and waste inventories are examined, waste radio-toxicities and decay heats are extracted and safety feedback coefficients are calculated. Finally, we discuss the economics of such strategies.  相似文献   

18.
Plutonium-rich mixed oxide fuel (MOX) is increasingly used in thermal reactors. However, spent MOX fuel could be a potential source of nuclear weapons material and a safeguards issue is therefore to determine whether a spent nuclear fuel assembly is of MOX type or of LEU (Low Enriched Uranium) type.  相似文献   

19.
20.
The possibility of utilizing thorium as a fuel in a pressurized water reactor(PWR)has been proven from the neutronic perspective in our previously published work without assessing the thermal hydraulic(TH)and solid structure performances.Therefore,the TH and solid structure performances must be studied to confirm these results and ensure the possibility of using a thorium-based fuel as an excellent accident-tolerant fuel.The TH and solid structure performances of thorium-based fuels were investigated and compared with those of U02.The radial and axial power peaking factors(PPFs)for U02,(232Th,235U)02,and(232Th,233U)02 were examined with a PWR assembly to determine the total PPF of each one.Both Gd203 and Er203 were tested as burnable absorbers(BAs)to manage the excess reactivity at the beginning of the fuel cycle(BOC)and reduce the total PPF.Er203 resulted in a more significant reduction to the total PPF and,therefore,a greater reduction to the temperature distribution compared to Gd203.Given these results,we analyzed the effects of adding Er203 to thorium-based fuels on their TH and solid structure performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号