共查询到20条相似文献,搜索用时 93 毫秒
1.
为了对存在异常值的图像构建低维线性子空间的描述,提出用鲁棒主元分析(RPCA)的新方法进行掌纹识别。运用图像下抽样方法降低掌纹空间的维数,在低维图像上应用RPCA提取低维的投影向量,然后将训练图像和待识别图像向投影向量上投影得到鲁棒主元特征,计算特征向量间的余弦距离进行掌纹匹配。运用PolyU掌纹图像库进行测试,结果表明,与主元分析(PCA)、独立元分析(ICA)和核主元分析(KPCA)相比,RPCA算法的识别率最高为99%,特征提取和匹配总时间0.032 s,满足了实时系统的要求。 相似文献
2.
基于主元分析法的航空发动机传感器故障诊断研究 总被引:2,自引:0,他引:2
主要研究了主元分析方法在航空发动机传感器故障诊断中的应用,并提出了主元分析法故障诊断算法。假设只有传感器故障情况下,将传感器测量值所组成的测量空间分解为主元和残差两个子空间,并通过传感器实际测量数据与正常数据矩阵在残差空间上的投影做比较,对传感器故障进行故障诊断;针对航空发动机的压力温度转速等传感器常见的故障,通过运行故障仿真平台绘制了其多元统计特征图;分析仿真结果表明,主元分析法对航空发动机传感器具有很好的故障检测和故障诊断能力。 相似文献
3.
航空发动机一般在高温、高压和高速转动的状态下工作,因此很难获取其全生命周期试验数据。针对无完整生命周期数据的小样本集合进行设计,提出一种基于元胞自动机的航空发动机故障诊断方法,该方法在获取发动机故障特征信息之后,利用元胞的扩散机制获取故障模式的分类边界。其优势在于:在给定的数据集前提下,可以利用较少的运行时间来约减给定的规则样本;可以利用积累或迭代的方式来分步获得原给定样本集的一致性子集。同时,算法的可积累性、运算时间可控等特点,使得该算法能连续应用在航空发动机试验样本数据集由小样本持续增加到大样本的过程中。该方法的应用对发动机的故障诊断的研究具有重要的指导意义。 相似文献
4.
胡长勃 《中国图象图形学报》2000,5(10):819-824
通过研究,建立了一个基于主元分析的识别办体行为的系统,其方法是通过在H、S、I颜色空间对皮肤颜色建立高期模型,结合运动限制和区域连续性,系统地分割并跟踪人脸和双手,然后,在PCA框架下,表示脸和手的运动参数曲线,并和范例进行匹配,这种通过对行为在时空域变化的建模方法,能在行为主体和成象条件有变化的情况下识别行为,以太极拳式谡列,来验证方法和系统的效果,实验结果证明了此方法误识率低,有一定的鲁棒性, 相似文献
5.
核主元分析及其在人脸识别中的应用 总被引:10,自引:0,他引:10
传统的基于数据二阶统计矩的特征脸法(Eigenface)或主元分析法(PCA)是一种有效的数据特征提取方法,是基于原始特征的一种线性变换。但是,当原始数据中存在非线性属性时,用主元分析法后留下的显著成分就可能不再反映这种非线性属性。而核主元分析则是基于原始数据的高阶统计量,是一种非线性变换,在图像识别中它可以描述多个像素之间的相关性。该文采用KPCA法提取人脸特征,利用线性支持向量机设计分类器,实验结果表明,基于核主元分析方法的识别正确率明显优于基于主元分析法。 相似文献
6.
针对IEC三比值法进行变压器故障诊断存在缺编码、编码边界模糊和诊断率偏低的问题,提出了采用主元分析和重构贡献图的故障诊断方法。在建立的PCA(Principal Component Analysis)统计过程模型上,构建SPE、T2统计量和重构贡献指标对变压器故障进行检测,并分析了贡献图法和重构贡献法的故障诊断性能。仿真结果表明基于主元分析和重构贡献图的故障诊断方法对数据更敏感,能够有效弥补IEC三比值法的不足,提高故障诊断正确率。 相似文献
7.
车辆识别技术作为智能交通管理系统中的研究热点和难点;在车辆识别技术中,应用Dempster- Shafer证据组合规则融合冲突信息时会产生不合理的结果;基于修正证据源的思想,提出了一种新的权重系数确定方法,该方法从证据主元角度分析,确定各组证据主元,利用该主元求出证据相容度、可信度,进而确定证据权重系数;通过新的证据冲突衡量方法,确定冲突值,归一化权重,修正证据源,按ER规则融合各组证据对目标进行识别;仿真部分以实际路面车辆车型识别为算例,将该方法与其他方法对比,结果表明:该方法能更有效地融合高度冲突的证据,减小计算复杂度,目标识别的准确性提高20%。 相似文献
8.
轴承状态识别的准确率与特征提取紧密相关,而特征提取对轴承状态识别显得尤为重要.因时频域的各个特征对不同程度的故障信号敏感度各不相同,特征提取不当将会造成状态识别准确率下降.针对上述问题提出粒子群优化(PSO)核主元分析(KPCA),并利用该方法对轴承的复合特征集进行特征提取,提取后的特征向量构成识别特征集,由优化的支持向量机识别分类.选用美国凯斯西储大学滚动轴承试验台的振动数据进行处理分析,通过3种实验方案进行验证.结果表明,提出的方法明显改善了轴承状态识别的准确率. 相似文献
9.
提出了一种双向二维加权主元分析方法用于人脸表情特征提取,该方法从水平和垂直两个方向对图像矩阵进行降维处理,大幅降低了所提取的特征数目;且考虑到人脸不同部位包含不同的表情信息这一特点,对各个特征赋予不同的权重系数。实验证明,与已有的二维主元分析相比较,该方法不但运算速度快,且获得了更高的识别率。 相似文献
10.
为了减少高维对计算成本的影响,同时提取有利于分类的判别特征,提出运用多线性主元分析(MPCA)与FLD相结合的方法进行掌纹识别。运用MPCA直接对掌纹张量进行降维和特征提取,低维特征向量作为FLD的输入,提取判别特征向量,计算特征向量间的余弦距离进行掌纹匹配。PolyU掌纹图像库的实验结果表明,与主元分析(PCA)、PCA+FLD、二维主元分析(2DPCA)、独立元分析(ICA)和MPCA相比,该算法的识别率(RR)最高为9991%,特征提取和匹配总时间为0398 s,满足实时系统的要求。 相似文献
11.
On-line performance optimisation of aero engine control system 总被引:1,自引:0,他引:1
This paper is focused on on-line performance optimisation of gas turbine engine control systems. Practical problems of optimal engine control design and implementation are considered. An algorithm for on-line resolution of the engine control optimisation problem is proposed. The example of turbo-jet engine on-line specific fuel consumption minimisation is presented. 相似文献
12.
分块PCA及其在人脸识别中的应用 总被引:2,自引:0,他引:2
主成分分析(principal component analysis,PCA)是公认的特征抽取的最为重要的工具之一,目前仍然被广泛地应用在人脸等图像识别领域.基于PCA,提出了分块PCA的人脸识别方法.分块PCA方法先对图像进行分块,对分块得到的子图像利用PCA进行鉴别分析.其特点是能有效地抽取图像的局部特征,对人脸表情和光照条件变化较大的图像表现尤为突出.与PCA方法相比,由于使用子图像矩阵,分块PCA可以避免使用奇异值分解理论,过程简便.此外,PCA是分块PCA的特例.在Yale和NUST603人脸库上的试验结果表明,所提出的方法在识别性能上明显优于经典的PCA方法,识别率可以分别提高6.7和4.4个百分点. 相似文献
13.
提出了一种改进的模块PCA方法,即基于独立特征抽取的模块PCA方法。算法先对图像进行分块,然后对每一子块独立地进行PCA处理,求出测试样本子块与训练样本对应子块间的距离;最后将这些距离相加得到测试样本与训练样本的距离,用最近距离分类器分类。在ORL人脸库和Yale人脸库上的实验结果表明,提出的方法在识别性能上明显优于普通模块PCA方法。 相似文献
14.
Ping-Cheng Hsieh Author Vitae Author Vitae 《Pattern recognition》2009,42(5):978-984
Recently, in a task of face recognition, some researchers presented that independent component analysis (ICA) Architecture I involves a vertically centered principal component analysis (PCA) process (PCA I) and ICA Architecture II involves a whitened horizontally centered PCA process (PCA II). They also concluded that the performance of ICA strongly depends on its involved PCA process. This means that the computationally expensive ICA projection is unnecessary for further process and involved PCA process of ICA, whether PCA I or II, can be used directly for face recognition. But these approaches only consider the global information of face images. Some local information may be ignored. Therefore, in this paper, the sub-pattern technique was combined with PCA I and PCA II, respectively, for face recognition. In other words, two new different sub-pattern based whitened PCA approaches (which are called Sp-PCA I and Sp-PCA II, respectively) were performed and compared with PCA I, PCA II, PCA, and sub-pattern based PCA (SpPCA). Then, we find that sub-pattern technique is useful to PCA I but not to PCA II and PCA. Simultaneously, we also discussed what causes this result in this paper. At last, by simultaneously considering global and local information of face images, we developed a novel hybrid approach which combines PCA II and Sp-PCA I for face recognition. The experimental results reveal that the proposed novel hybrid approach has better recognition performance than that obtained using other traditional methods. 相似文献
15.
Ying Wen Author Vitae Yue Lu Author Vitae Pengfei Shi Author Vitae 《Pattern recognition》2007,40(1):99-107
A recognition system for handwritten Bangla numerals and its application to automatic letter sorting machine for Bangladesh Post is presented. The system consists of preprocessing, feature extraction, recognition and integration. Based on the theories of principal component analysis (PCA), two novel approaches are proposed for recognizing handwritten Bangla numerals. One is the image reconstruction recognition approach, and the other is the direction feature extraction approach combined with PCA and SVM. By examining the handwritten Bangla numeral data captured from real Bangladesh letters, the experimental results show that our proposed approaches are effective. To meet performance requirements of automatic letter sorting machine, we integrate the results of the two proposed approaches with one conventional PCA approach. It has been found that the recognition result achieved by the integrated system is more reliable than that by one method alone. The average recognition rate, error rate and reliability achieved by the integrated system are 95.05%, 0.93% and 99.03%, respectively. Experiments demonstrate that the integrated system also meets speed requirement. 相似文献
16.
17.
掌纹识别是一种新兴的生物特征识别技术。掌纹识别是用掌纹特征(包括人眼可见的和不可见的)来进行身份鉴别的一种方法。其中掌纹特征提取和掌纹特征匹配是掌纹识别研究的关键部分和核心内容。在特征提取方面,给出了两种改进的特征提取方法。先对掌纹图像进行傅里叶变换,再对变换后的图像进行主成分分析;针对掌纹图像的特点,对PCA进行改进,设计了适用于掌纹图像的分块主成分算法。将一整幅掌纹图像分为若干子块图像,在此基础上进行主成分分析。通过实验验证了改进的特征提取方法可以提高识别准确率。在特征识别方面,模版匹配虽然在一定程度上计算量小,准确率高,但容易陷入小样本问题。因此通过训练SVM分类器,进行掌纹识别。实验证明该方法有较好的可行性。 相似文献
18.
Block-wise 2D kernel PCA/LDA for face recognition 总被引:1,自引:0,他引:1
Armin Eftekhari Hamid Abrishami Moghaddam Javad Alirezaie 《Information Processing Letters》2010,110(17):761-766
Direct extension of (2D) matrix-based linear subspace algorithms to kernel-induced feature space is computationally intractable and also fails to exploit local characteristics of input data. In this letter, we develop a 2D generalized framework which integrates the concept of kernel machines with 2D principal component analysis (PCA) and 2D linear discriminant analysis (LDA). In order to remedy the mentioned drawbacks, we propose a block-wise approach based on the assumption that data is multi-modally distributed in so-called block manifolds. Proposed methods, namely block-wise 2D kernel PCA (B2D-KPCA) and block-wise 2D generalized discriminant analysis (B2D-GDA), attempt to find local nonlinear subspace projections in each block manifold or alternatively search for linear subspace projections in kernel space associated with each blockset. Experimental results on ORL face database attests to the reliability of the proposed block-wise approach compared with related published methods. 相似文献
19.
提出了一种新颖的沿中线投影得到特征的步态识别方法。首先,应用背景差方法分割出运动人体轮廓,对外轮廓沿人体中线投影可以得到前后两个向量,合成1D向量作为步态特征。然后,通过主成分分析对得到的一维向量进行特征提取和压缩,对得到的识别量应用支持向量机进行步态的分类和识别。实验中,该方法取得了很好的识别性能。 相似文献