首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于空间结构统计建模的图像分类方法   总被引:3,自引:0,他引:3  
提出一种基于图像空间结构统计建模的复杂纹理图像模式识别方法。从理论上分析了复杂纹理图像空间结构的韦伯分布过程,通过构造多尺度全向高斯导数滤波器,获得复杂纹理图像在不同观测尺度上的全方向空间结构统计建模表征结果。基于偏最小二乘-判决分析原理构建分类器,实现了复杂纹理图像的分类识别。实验结果表明,所提出的图像空间结构统计建模方法能获得复杂纹理图像关键性的视觉感知特性,基于该方法的图像分类准确率高且性能稳定。  相似文献   

2.
Most successful approaches on scene recognition tend to efficiently combine global image features with spatial local appearance and shape cues. On the other hand, less attention has been devoted for studying spatial texture features within scenes. Our method is based on the insight that scenes can be seen as a composition of micro-texture patterns. This paper analyzes the role of texture along with its spatial layout for scene recognition. However, one main drawback of the resulting spatial representation is its huge dimensionality. Hence, we propose a technique that addresses this problem by presenting a compact Spatial Pyramid (SP) representation. The basis of our compact representation, namely, Compact Adaptive Spatial Pyramid (CASP) consists of a two-stages compression strategy. This strategy is based on the Agglomerative Information Bottleneck (AIB) theory for (i) compressing the least informative SP features, and, (ii) automatically learning the most appropriate shape for each category. Our method exceeds the state-of-the-art results on several challenging scene recognition data sets.  相似文献   

3.
4.
We investigate the second-order stochastic ordering of the extreme value distributions within each of three families: the Gumbel distribution, the Frechet distribution, and the Weibull distribution. We give conditions for second-order stochastic dominance, conditional second-order stochastic dominance, and order statistics second-order stochastic dominance within the three families  相似文献   

5.
6.
Several continuous manufacturing processes use stochastic texture images for quality control and monitoring. Large amounts of pictorial data are acquired, providing important information about both the materials produced and the manufacturing processes involved. However, it is often difficult to measure objectively the similarity among industrial stochastic images or to discriminate between texture images of stochastic materials with distinct properties. Nowadays, the degree of discrimination required by industrial processes often goes beyond the limits of human visual perception. This paper proposes to model this specific class of textures as colored noise and presents a new approach for multiresolution stochastic texture representation and discrimination in industry (e.g., nonwoven textiles and paper). The wavelet transform is used to represent stochastic texture images in multiple resolutions and to describe them using local orientation and density variability as features. Based on this representation, a multiresolution distance measure for stochastic textures is proposed, and industrial applications of the method and experimental results are reported. The conclusions include ideas for future work  相似文献   

7.
8.
9.
This study addresses the modelling of synthetic aperture radar (SAR) image texture for sea ice scenes in the Labrador marginal ice zone (MIZ). The image texture of distributed scatterers contains a substantial component relating to the imaging system as well as information about the scene itself. Theory shows that the image autocorrelation function (ACF) may be analysed to separate system contributions from scene contributions under certain conditions. The main theses of the study are: (i) SAR intensity images of sea ice are spatially nonGaussian; and (ii) the predominant types and forms of MIZ sea ice may be discriminated based upon ACF model parameters. Experimental results indicate that the model provides an excellent fit to the measured ACFs. The image texture was found to be a strong function of the form of the sea ice as well as its type. For a given type, the various forms could be discriminated through a single SAR channel. For full discrimination of all types and forms observed, a two-channel combination was necessary: XHV CHH or XHV CHV.  相似文献   

10.
目的 高效视频编码(HEVC)采用率失真优化技术选择最佳的编码参数,实现编码比特率和视频图像失真之间的平衡。失真度量通常采用均方误差和绝对误差和,这些方法并没有考虑人眼的主观感受。为了提高视频编码的主观感知质量,提出一个融合视觉感知特性的率失真优化算法,并应用于帧间率失真优化过程中。方法 首先定义了一个视觉感知因子,该因子考虑了人类视觉系统对视频图像的空域活动性区域、纹理区域、时域运动性区域和亮度的感知特性,然后以编码树单元为单位对拉格朗日乘子进行自适应调整,最后根据拉格朗日乘子与量化参数之间的关系,对量化参数做进一步的修正。结果 与HEVC参考软件相比,本文算法明显提高了率失真性能,对于相同的结构相似度(SSIM)分值,本文算法在随机访问和低延时配置下平均分别节省3.1%,4.9%的码率,最高能节省9.0%的码率。与代表性文献算法相比,对于相同的SSIM,本文算法在随机访问和低延时配置下平均分别增加了0.7%,2.2%的码率节省。结论 本文率失真优化策略能够根据图像不同的视觉特性自适应的调整率失真优化过程中的拉格朗日乘子,在保持编码质量基本不变的情况下,节省了码率,提高了HEVC的编码性能。  相似文献   

11.
We propose an adaptive model for backgrounds containing significant stochastic motion (e.g. water). The new model is based on a generalization of the Stauffer–Grimson background model, where each mixture component is modeled as a dynamic texture. We derive an online K-means algorithm for updating the parameters using a set of sufficient statistics of the model. Finally, we report on experimental results, which show that the proposed background model both quantitatively and qualitatively outperforms state-of-the-art methods in scenes containing significant background motions.  相似文献   

12.
We propose a novel framework to generate a global texture atlas for a deforming geometry. Our approach distinguishes from prior arts in two aspects. First, instead of generating a texture map for each timestamp to color a dynamic scene, our framework reconstructs a global texture atlas that can be consistently mapped to a deforming object. Second, our approach is based on a single RGB‐D camera, without the need of a multiple‐camera setup surrounding a scene. In our framework, the input is a 3D template model with an RGB‐D image sequence, and geometric warping fields are found using a state‐of‐the‐art non‐rigid registration method [GXW*15] to align the template mesh to noisy and incomplete input depth images. With these warping fields, our multi‐scale approach for texture coordinate optimization generates a sharp and clear texture atlas that is consistent with multiple color observations over time. Our approach is accelerated by graphical hardware and provides a handy configuration to capture a dynamic geometry along with a clean texture atlas. We demonstrate our approach with practical scenarios, particularly human performance capture. We also show that our approach is resilient on misalignment issues caused by imperfect estimation of warping fields and inaccurate camera parameters.  相似文献   

13.
Automatic Lighting Design using a Perceptual Quality Metric   总被引:1,自引:0,他引:1  
Lighting has a crucial impact on the appearance of 3D objects and on the ability of an image to communicate information about a 3D scene to a human observer. This paper presents a new automatic lighting design approach for comprehensible rendering of 3D objects. Given a geometric model of a 3D object or scene, the material properties of the surfaces in the model, and the desired viewing parameters, our approach automatically determines the values of various lighting parameters by optimizing a perception-based image quality objective function. This objective function is designed to quantify the extent to which an image of a 3D scene succeeds in communicating scene information, such as the 3D shapes of the objects, fine geometric details, and the spatial relationships between the objects.
Our results demonstrate that the proposed approach is an effective lighting design tool, suitable for users without expertise or knowledge in visual perception or in lighting design.  相似文献   

14.
The assumption that a real scene is a single sample under an assumed model allows simulated scenes with stochastic properties similar to those of the actual scene, which can be utilized for evaluation and validation of proposed models and investigation of the reliability of the results. With this purpose, an appropriate model-based approach to account for stochastic properties of the scenes is required. This research focused on development of a hierarchical stochastic model to characterize processes observed in remotely sensed imagery and simulation of scenes based on the developed models to provide a general methodology for dynamic spatial landscape modeling and a variety of image processing research.The new model is based on a comprehensive stochastic representation of the scene. At the higher level, region formation process is modeled as a large scale characteristic of the scene employing a Markov random field. The boundary variation around the adjacent regions is dealt with using fuzzy approach. The natural variability within each region is represented at the lower level of the hierarchy. For this, two approaches based on the different assumptions are suggested in modeling the statistical features of continuous radiance field. In the first model, pixel intensities are assumed to be independently and identically distributed and the second model employs a continuous random field including possible contextual information. Finally, this integrated simulation process forms the multispectral images.  相似文献   

15.
We propose a novel approach to simulate the illumination of augmented outdoor scene based on a legacy photograph. Unlike previous works which only take surface radiosity or lighting related prior information as the basis of illumination estimation, our method integrates both of these two items. By adopting spherical harmonics, we deduce a linear model with only six illumination parameters. The illumination of an outdoor scene is finally calculated by solving a linear least square problem with the color constraint of the sunlight and the skylight. A high quality environment map is then set up, leading to realistic rendering results. We also explore the problem of shadow casting between real and virtual objects without knowing the geometry of objects which cast shadows. An efficient method is proposed to project complex shadows (such as tree's shadows) on the ground of the real scene to the surface of the virtual object with texture mapping. Finally, we present an unified scheme for image composition of a real outdoor scene with virtual objects ensuring their illumination consistency and shadow consistency. Experiments demonstrate the effectiveness and flexibility of our method.  相似文献   

16.
We have developed a computational model for texture perception which has physiological relevance and correlates well with human performance. The model attempts to simulate the visual processing characteristics by incorporating mechanisms tuned to detect luminance-polarity, orientation, spatial frequency and color, which are characteristic features of any textural image. We obtained a very good correlation between the model's simulation results and data from psychophysical experiments with a systematically selected set of visual stimuli with texture patterns defined by spatial variations in color, luminance, and orientation. In addition, the model predicts correctly texture segregation performance with key benchmarks and natural textures. This represents a first effort to incorporate chromatic signals in texture segregation models of psychophysical relevance, most of which have treated grey-level images so far. Another novel feature of the model is the extension or the concept of spatial double opponency to domains beyond color, such as orientation and spatial frequency. The model has potential applications in the areas of image processing, machine vision and pattern recognition, and scientific visualization.  相似文献   

17.
Highly accurate real‐time localization is of fundamental importance for the safety and efficiency of planetary rovers exploring the surface of Mars. Mars rover operations rely on vision‐based systems to avoid hazards as well as plan safe routes. However, vision‐based systems operate on the assumption that sufficient visual texture is visible in the scene. This poses a challenge for vision‐based navigation on Mars where regions lacking visual texture are prevalent. To overcome this, we make use of the ability of the rover to actively steer the visual sensor to improve fault tolerance and maximize the perception performance. This paper answers the question of where and when to look by presenting a method for predicting the sensor trajectory that maximizes the localization performance of the rover. This is accomplished by an online assessment of possible trajectories using synthetic, future camera views created from previous observations of the scene. The proposed trajectories are quantified and chosen based on the expected localization performance. In this study, we validate the proposed method in field experiments at the Jet Propulsion Laboratory (JPL) Mars Yard. Furthermore, multiple performance metrics are identified and evaluated for reducing the overall runtime of the algorithm. We show how actively steering the perception system increases the localization accuracy compared with traditional fixed‐sensor configurations.  相似文献   

18.
Shape from texture is best analyzed in two stages, analogous to stereopsis and structure from motion: (a) Computing the texture distortion from the image, and (b) Interpreting the texture distortion to infer the orientation and shape of the surface in the scene. We model the texture distortion for a given point and direction on the image plane as an affine transformation and derive the relationship between the parameters of this transformation and the shape parameters. We have developed a technique for estimating affine transforms between nearby image patches which is based on solving a system of linear constraints derived from a differential analysis. One need not explicitly identify texels or make restrictive assumptions about the nature of the texture such as isotropy. We use non-linear minimization of a least squares error criterion to recover the surface orientation (slant and tilt) and shape (principal curvatures and directions) based on the estimated affine transforms in a number of different directions. A simple linear algorithm based on singular value decomposition of the linear parts of the affine transforms provides the initial guess for the minimization procedure. Experimental results on both planar and curved surfaces under perspective projection demonstrate good estimates for both orientation and shape. A sensitivity analysis yields predictions for both computer vision algorithms and human perception of shape from texture.  相似文献   

19.
We propose an efficient approach for authoring dynamic and realistic waterfall scenes based on an acquired video sequence. Traditional video based techniques generate new images by synthesizing 2D samples, i.e., texture sprites chosen from a video sequence. However, they are limited to one fixed viewpoint and cannot provide arbitrary walkthrough into 3D scenes. Our approach extends this scheme by synthesizing dynamic 2D texture sprites and projecting them into 3D space. We first generate a set of basis texture sprites, which capture the representative appearance and motions of waterfall scenes contained in the video sequence. To model the shape and motion of a new waterfall scene, we interactively construct a set of flow lines taking account of physical principles. Along each flow line, the basis texture sprites are manipulated and animated dynamically, yielding a sequence of dynamic texture sprites in 3D space. These texture sprites are displayed using the point splatting technique, which can be accelerated efficiently by graphics hardware. By choosing varied basis texture sprites, waterfall scenes with different appearance and shapes can be conveniently simulated. The experimental results demonstrate that our approach achieves realistic effects and real‐time frame rates on consumer PC platforms. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Markov random field texture models   总被引:12,自引:0,他引:12  
We consider a texture to be a stochastic, possibly periodic, two-dimensional image field. A texture model is a mathematical procedure capable of producing and describing a textured image. We explore the use of Markov random fields as texture models. The binomial model, where each point in the texture has a binomial distribution with parameter controlled by its neighbors and ``number of tries' equal to the number of gray levels, was taken to be the basic model for the analysis. A method of generating samples from the binomial model is given, followed by a theoretical and practical analysis of the method's convergence. Examples show how the parameters of the Markov random field control the strength and direction of the clustering in the image. The power of the binomial model to produce blurry, sharp, line-like, and blob-like textures is demonstrated. Natural texture samples were digitized and their parameters were estimated under the Markov random field model. A hypothesis test was used for an objective assessment of goodness-of-fit under the Markov random field model. Overall, microtextures fit the model well. The estimated parameters of the natural textures were used as input to the generation procedure. The synthetic microtextures closely resembled their real counterparts, while the regular and inhomogeneous textures did not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号