首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transition metal oxide compounds with perovskite‐type structure (AMX3‐δ) show besides attractive physical properties, such as high temperature superconduction or thermoelectricity, often excellent catalytic properties for various redox reactions. The catalytic reactivity is strongly dependent on composition, structure and of course the specific surface area of the compounds. Fine‐tuning of the properties can therefore be achieved by suitable cation‐ and anion‐ substitutions and by adjusting the morphology of the compounds. For systematic studies on the relationship between composition, structure and properties in these systems fine particles as well as thin films of identical compositions e.g. La1‐xCaxMO3‐δ (x = 0, 0.3, 0.4 , 0.5) (M = Fe, Co, Ni, Mn, Ti) are produced with diverse “chimie douce” methods. The samples are characterised concerning their chemical and physical properties. Carbon nanotube composite materials have been produced by catalytic decomposition of gaseous carbon compounds on nanometer‐size transition metal clusters on top of perovskite‐type metal oxides and tested for a possible application as oxygen electrodes in air based batteries.  相似文献   

2.
A method to introduce high-index facets into colloidally synthesized nanoparticles is used to produce compositionally uniform Pt–M (M = Ni, Co, and Cu) and Rh–M (M = Ni and Co) tetrahexahedral nanoparticles. The realization of this method allows for a systematic study of catalyst activity as a function of particle composition for various electrooxidation reactions of liquid fuels (formic acid, methanol, and ethanol). The individual contributions of their high-index facets, internal alloying of transition metals, and surface Bi modification to their electrocatalytic properties are experimentally explored, resulting in three key findings. First, the presence of high-index facets is favorable for improving the catalytic activity for all three classes of reactions studied. Second, the effect of transition metal alloying on catalytic activity differs from reaction to reaction. For methanol electrooxidation in an acid electrolyte, due to the contribution from surface Bi modification being negligible, transition metal alloying can significantly the improve overall catalytic efficiency. However, for the other studied reactions, where the surface Bi is highly favorable for improving catalytic activity, there is little influence from transition metal alloying. Finally, multimetallic tetrahexahedral particles have improved stabilities during prolonged operation compared to their monometallic counterparts due to the presence of the alloyed transition metal atoms.  相似文献   

3.
Advances in material design and applications are highly dependent on the development of particle surface engineering strategies. However, few universal methods can functionalize particles of different compositions, sizes, shapes, and structures. The amyloid‐like lysozyme assembly‐mediated surface functionalization of inorganic, polymeric or metal micro/nanoparticles in a unique amyloid‐like phase‐transition buffer containing lysozyme are described. The rapid formation of a robust nanoscale phase‐transitioned lysozyme (PTL) coating on the particle surfaces presents strong interfacial binding to resist mechanical and chemical peeling under harsh conditions and versatile surface functional groups to support various sequential surface chemical derivatizations, such as radical living graft polymerization, the electroless deposition of metals, biomineralization, and the facile synthesis of Janus particles and metal/protein capsules. Being distinct from other methods, the preparation of this pure protein coating under biocompatible conditions (e.g., neutral pH and nontoxic reagents) provides a reliable opportunity to directly modify living cell surfaces without affecting their biological activity. The PTL coating arms yeasts with a functional shell to protect their adhered body against foreign enzymatic digestion. The PTL coating further supports the surface immobilization of living yeasts for heterogeneous microbial reactions and the sequential surface chemical derivatization of the cell surfaces, e.g., radical living graft polymerization.  相似文献   

4.
As a possible means of reducing the costs associated with the production of metal matrix composites, the use of inexpensive, naturally occurring minerals as a reinforcing agent is one alternative currently being considered. In such efforts, the occurrence of extensive chemical reaction between the minerals and matrix alloy has been noted. In an effort to utilize the reaction products from such reactions, a novel technique known as core/shell processing was developed. Core/shell and bulk alloy samples were prepared through powder metallurgy techniques (blending, cold isostatic pressing, and sintering) followed by hot swaging and finally machining as required. Sintered samples were examined by means of mercury densitometry, optical/scanning electron microscopy, electron microprobe analysis, and mechanical testing (tensile and impact). Microprobe analysis of sintered core/shell samples indicated the occurrence of extensive chemical reactions between the alloy and mineral particles in the shell region, resulting in a rejection of calcium from the mineral into the surrounding matrix followed by eventual migration into the intergranular regions of the core. Mechanical testing revealed core/shell processed samples had significantly improved impact properties while maintaining tensile properties similar to bulk alloy samples. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

5.
利用介孔组装,可以进行纳米复合材料结构和功能设计。通过溶胶-凝胶方法,采用混合、浸泡和氢热还原工艺,获得纳米镍/介孔二氧化硅复合材料。运用DSC、XRD、XPS、TEM等手段对纳米镍/介孔二氧化硅复合材料进行表征。结果表明,纳米金属Ni颗粒的尺寸由介孔SiO2的结构和孔径分布决定,受还原温度和成分等影响,在8~20nm范围变化,浸泡法更容易获得纳米金属颗粒均匀分布的复合材料。由于SiO2介孔结构连通,纳米Ni表面存在氧化,纳米颗粒存在于介孔中形成壳结构。介孔二氧化硅基体中添加稀土元素Ce,有利于增强介孔基体骨架强度,限制纳米颗粒聚集长大。   相似文献   

6.
采用化学液相法合成可控制尺寸的六方晶形Co纳米粒子 ,对其形状和大小进行了透射电镜及激光散射分析 ,确认Co纳米粒子为球形 ,平均粒径为 4 0 0nm。在正己烷中基本无团聚。本文着重探索了制备纳米级钴粒子的工艺流程 ,通过改变反应物浓度、反应温度、反应时间、分散剂的添加量和反应过程搅拌情况等 ,寻找到制备Co纳米粒子的最佳反应条件。并初步进行了自组装实验。  相似文献   

7.
Precious metal nanoparticles are commonly used as the main active components of various catalysts. Given their high cost, limited quantity, and easy loss of catalytic activity under severe conditions, precious metals should be used in catalysts at low volumes and be protected from damaging environments. Accordingly, reducing the amount of precious metals without compromising their catalytic performance is difficult, particularly under challenging conditions. As multifunctional materials, core–shell nanoparticles are highly important owing to their wide range of applications in chemistry, physics, biology, and environmental areas. Compared with their single-component counterparts and other composites, core–shell nanoparticles offer a new active interface and a potential synergistic effect between the core and shell, making these materials highly attractive in catalytic application. On one hand, when a precious metal is used as the shell material, the catalytic activity can be greatly improved because of the increased surface area and the closed interfacial interaction between the core and the shell. On the other hand, when a precious metal is applied as the core material, the catalytic stability can be remarkably improved because of the protection conferred by the shell material. Therefore, a reasonable design of the core–shell catalyst for target applications must be developed. We summarize the latest advances in the fabrications, properties, and applications of core–shell nanoparticles in this paper. The current research trends of these core–shell catalysts are also highlighted.  相似文献   

8.
Prereduction of transition metal oxides is a feasible and efficient strategy to enhance their catalytic activity for hydrogen evolution. Unfortunately, the prereduction via the common H2 annealing method is unstable for nanomaterials during the hydrogen evolution process. Here, using NiMoO4 nanowire arrays as the example, it is demonstrated that carbon plasma (C‐plasma) treatment can greatly enhance both the catalytic activity and the long‐term stability of transition metal oxides for hydrogen evolution. The C‐plasma treatment has two functions at the same time: it induces partial surface reduction of the NiMoO4 nanowire to form Ni4Mo nanoclusters, and simultaneously deposits a thin graphitic carbon shell. As a result, the C‐plasma treated NiMoO4 can maintain its array morphology, chemical composition, and catalytic activity during long‐term intermittent hydrogen evolution process. This work may pave a new way for simultaneous activation and stabilization of transition metal oxide‐based electrocatalysts.  相似文献   

9.
多壳层中空金属氧化物具有优异的物理和化学特性。其内部空腔及多壳层结构使其具有大的比表面积,为电化学反应提供了更多的活性位点,因此多壳层中空金属氧化物在电化学领域得到了广泛的应用。本文主要介绍了多壳层中空金属氧化物的合成进展,通过硬模板法、软模板法、选择性刻蚀法和热分解法为例,详细描述了制备得到的不同元素组成、不同壳层数的中空金属氧化物,总结了多壳层中空金属氧化物在超级电容器、锂离子电池和传感器领域表现出的优异性能,最后对多壳层中空金属氧化物的应用前景进行了展望。  相似文献   

10.
A method for monitoring the process of electron accommodation during chemical reactions at the gas-solid (metal, semiconductor) interface is proposed. It is established that the tunneling electron current from a solid surface (Ni, Cu, Si steel) increases by a factor of 103–105 when a heterogeneous chemical reaction (H+H→H2) proceeds on the surface. Autooscillations of the reaction-stimulated tunneling current have been observed. A method of investigation of the structure of surface catalytic centers on a nanometer resolution level is proposed.  相似文献   

11.
张瑞元  李凯  宁平  汤立红  刘烨  王驰 《材料导报》2015,29(15):123-129
综述了SCO法(选择性催化氧化法)中催化剂的研究现状。从过渡金属元素、稀土元素、贵金属、活性炭四类催化剂进行了介绍。锰类复合氧化物催化剂具有较高的催化活性,且成本较低。钙钛矿催化剂的催化活性能与贵金属类催化剂相媲美。这些非贵金属催化剂成本都较低,具有潜在的应用价值。但总的来说目前对于催化剂抗硫抗水的研究还不够深入,一些催化剂可能还未达到实际工业应用中应具有的抗中毒能力。总结分析了SCO法应用中存在的问题,展望了其应用前景。  相似文献   

12.
采用浸渍法制备出纳米NiO/MgO,运用X射线衍射(XRD)、透射电子显微镜(TEM),X射线能谱仪(EDS)等对产物的物相和组成进行了表征,利用DSC/TGMS研究了纳米NiO/MgO对高氯酸按(AP)热分解的催化作用.结果表明,在纳米NiO/Mgo的催化作用下,AP的热分解高温分解峰温度降低92.2℃,表观分解热增...  相似文献   

13.
This paper introduces a stepwise formation method for micro-sized, multilayered core-shell particles comprising an inorganic core, organic inner shell, and inorganic outer shell. A silica core was coated with a polystyrene seed layer, followed by surface seed polymerization with styrene, to afford the inner shell. These particles were then coated with a silica outer shell by a surface sol-gel reaction with tetraethoxysilane. The versatility of this combined surface seed polymerization and sol-gel method is emphasized by the precise control achieved over particle diameter as well as shell thickness and count. Moreover, the organic inner shell can be readily eliminated to afford a single-core-containing micro-capsular structure.  相似文献   

14.
Using interfacial reaction systems for biphasic catalytic reactions is attracting more and more attention due to their simple reaction process and low environmental pollution. Yolk–shell structured materials have broad applications in biomedicine, catalysis, and environmental remediation owing to their open channels and large space for guest molecules. Conventional methods to obtain yolk–shell mesoporous materials rely on costly and complex hard‐template strategies. In this study, a mild and convenient nonsacrificial self‐template strategy is developed to construct yolk–shell magnetic periodic mesoporous organosilica (YS‐mPMO) particles by using the unique swelling–deswelling property of low‐crosslinking density resorcinol formaldehyde (RF). The obtained YS‐mPMO microspheres possess an amphiphilic outer shell, high surface area (393 m2 g?1), uniform mesopores (2.58 nm), a tunable middle hollow space (50–156 nm), and high superparamagnetism (34.4–37.1 emu g?1). By tuning the synthesis conditions, heterojunction structured yolk–shell Fe3O4@RF@void@PMO particles with different morphologies can be produced. Owing to the amphipathy of PMO framworks, the YS‐mPMO particles show great emulsion stabilization ability and recyclability under a magnetic field. YS‐mPMO microspheres with immobilized Au nanoparticles (≈3 nm) act as both solid emulsifier for dispersing styrene (St) in water and interface catalysts for selective conversion of St into styrene oxide with a high selectivity of 86%, and yields of over 97%.  相似文献   

15.
Nanometer-sized Pt, Rh, and bimetallic Pt-Rh particles can be deposited on surface of phenylacetic acid functionalized single-walled carbon nanotubes (SWCNTs) by a microemulsion method. The SWCNT-supported metallic nanoparticles show much greater catalytic activities compared with commercially available carbon-supported Pt and Rh catalysts for hydrogenation of neat benzene under mild experimental conditions. The bimetallic Pt-Rh nanoparticle catalyst synthesized by this method shows an enhanced activity relative to individual SWCNT-supported Pt and Rh nanoparticle catalysts. The SWCNT-supported metal nanoparticle catalysts can be recycled and reused at least five times without losing their activity. The hydrogenation reactions performed under our experimental conditions would not affect the pi-pi stacking holding phenylacetic acid on SWCNT surface.  相似文献   

16.
Toughened epoxy resin composites have been prepared by resin-transfer moulding by using a range of toughening agents. Two types of epoxy-functional preformed toughening particles were investigated and have a three-layer morphology in which the inner core is crosslinked poly(methyl methacrylate), the intermediate layer is crosslinked poly(butyl acrylate) rubber and the outer layer is a poly[(methyl methacrylate)-co-(ethyl acrylate)-co-(glycidyl methacrylate)]. The presence of glycidyl groups in the outer layer facilitates chemical reaction with the matrix epoxy resin during curing. Comparisons were made with acrylic toughening particles that have a similar structure, but which do not have the epoxy functionality in the outer shell, and with a conventional carboxy-terminated butadiene acrylonitrile (CTBN) liquid rubber toughening agent. The composites were characterised by using tensile, compression and impact testing. The fracture surfaces and sections through the moulded composites were examined by means of optical and scanning electron microscopy. Short-beam shear tests and fragmentation tests were used to investigate the interfacial properties of the composites. In general, use of the epoxy-functionalised toughening particles gave rise to superior properties compared with both the non-functionalised acrylic toughening particles and CTBN.  相似文献   

17.
Core–shell materials have attracted a great deal of interest since core–shell particles have superior physical and chemical properties compared to their single-component counterparts. The cathode material Li(Ni0.8Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 (LNCANMO) with a core–shell structure was synthesized via a co-precipitation method and investigated as the cathode material for lithium ion batteries. The core–shell particle consisted of LiNi0.8Co0.15Al0.05O2 (LNCAO) as the core and LiNi0.5Mn0.5O2 as the shell. The cycling behavior between 2.8 and 4.3 V at a current of 0.1 C-rate showed a reversible capacity of ~195 mAh g?1 with little capacity loss after 50 cycles. Extensive assessment of the electronic structures of the LNCAO and LNCANMO cathode materials was carried out using X-ray absorption spectroscopy (XAS). XAS has been used for structure refinement on the transition metal ion of the cathode. In particular, XAS studies of electrochemical reactions have been done from the viewpoint of the transition metal ion. In this study, Ni K-edge XAS spectra of the charge and discharge processes of LNCAO and LNCANMO were investigated.  相似文献   

18.
19.
Kang K  Kim SK  Kim CJ  Jo MH 《Nano letters》2008,8(2):431-436
We report a controllably reproducible and spontaneous growth of single-crystalline NiSix nanowires using NiOx/Ni seed layers during SiH4 chemical vapor deposition (CVD). We provide evidence that upon the reactions of SiH4 (vapor)-Ni seed layers (solid), the presence of the NiOx overlayer on Ni seed layers plays the key role to promote the spontaneous one-dimensional growth of NiSix single crystals without employing catalytic nanocrystals. Specifically, the spontaneous nanowire formation on the NiOx overlayer is understood within the frame of the SiH4 vapor-phase reaction with out-diffused Ni from the Ni underlayers, where the Ni diffusion is controlled by the NiOx overlayers for the limited nucleation. We show that single-crystalline NiSix nanowires by this self-organized fashion in our synthesis display a narrow diameter distribution, and their average length is set by the thickness of the Ni seed layers. We argue that our simple CVD method employing the bilayers of transition metal and their oxides as the seed layers can provide implication as the general synthetic route for the spontaneous growth of metal-silicide nanowires in large scales.  相似文献   

20.
Carbon nanotubes (CNTs) are among the strongest materials known, making their use in composites, a field with very high commercial potential for structural applications. Many of the methods reported to date to form metal composites have an excessive number of steps. Here, a facile chemical vapor deposition method to infiltrate multiwalled carbon nanotubes directly into pure stainless steel pellets and pellets from stainless steel mixed with iron particles is reported. The iron powder was dry-coated before vapor filtration with nanosized iron oxide catalyst precursor, a critical step to increase catalytic activity. This CVD method results in a substantial increase in the elastic modulus, yield strength, and hardness by 47, 104, and over 93 %, respectively, for composites made from mixed, dry-coated particles compared with corresponding control samples without nanotubes. This is the highest enhancement reported, to the best of our knowledge, of the mechanical properties for a metal–nanotube composite prepared using a metal other than copper. The addition of CNTs results in a relatively small increase in corrosion rate which can be mitigated to negligible levels by coating with a thin epoxy–carbon nanotube composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号