共查询到15条相似文献,搜索用时 62 毫秒
1.
2.
协同过滤算法可以根据用户的历史行为记录去预测其可能喜欢的物品,是现在业界应用极为广泛的推荐算法。但传统的协同过滤算法并没有考虑到用户兴趣的概念漂移,在一些基于时间的协同过滤算法中对推荐时效性的考虑也有所欠缺。针对这些问题,结合用户兴趣随时间转移的特点,改进了相似度的度量方法,同时引入一种增强的时间衰减模型来度量预测值,并将这两种方式有机地结合起来,解决了用户兴趣的概念漂移问题并考虑了推荐算法的时效性。仿真实验中,分别在不同的数据集中对比了该算法与UserCF、TCNCF、PTCF以及TimeSVD++算法的预测评分准确度和TopN推荐准确度。实验结果表明,改进算法能够降低预测评分的均方根误差(RMSE),并在TopN推荐准确度上均优于对比算法。 相似文献
4.
针对传统的协同过滤算法忽略了用户兴趣源于关键词以及数据稀疏的问题,提出了结合用户兴趣度聚类的协同过滤推荐算法。利用用户对项目的评分,并从项目属性中提取关键词,提出了一种新的RF-IIF (rating frequency-inverse item frequency)算法,根据目标用户对某关键词的评分频率和该关键词被所有用户的评分频率,得到用户对关键词的偏好,形成用户—关键词偏好矩阵,并在该矩阵基础上进行聚类。然后利用logistic函数得到用户对项目的兴趣度,明确用户爱好,在类簇中寻找目标用户的相似用户,提取邻居爱好的前◢N◣个物品对用户进行推荐。实验结果表明,算法准确率始终优于传统算法,对用户爱好判断较为准确,缓解了数据稀疏问题,有效提高了推荐的准确率和效率。 相似文献
5.
《计算机应用与软件》2013,(6)
针对传统协同过滤算法存在的两个弊端:一是传统的相似性度量方法在评分矩阵稀疏的情况下很难准确地反映用户间的相似性,二是不能及时反映用户的兴趣变化,提出一种新的相似性计算方法。此方法把基于用户兴趣度的相似性度量与基于项目相似度的数据权重结合,形成一种考虑用户兴趣变化的相似性度量方法。实验结果表明,改进后的算法集成了上述两种方法的优点,对传统算法中存在的两个弊端进行了改善,在推荐准确度上有所提高。 相似文献
6.
协同过滤是推荐系统中应用最为广泛的方法.基于用户的协同过滤算法在计算用户相似性时,对不同的项目给予相同的权重,然而在现实中不同项目对刻画用户的兴趣所起作用不同,从而基于用户的协同过滤会造成对流行的项目打分高的问题,而不能真正反映用户的兴趣.本文提出项目的区分用户偏好值概念,从而更好的刻画了用户的兴趣,在此基础上,改进了计算用户相似度的方法,使推荐算法具有较高准确度.算法在标准数据集MovieLens上进行了测试,实验表明了算法的有效性. 相似文献
7.
目前许多基于社会化标签的推荐均忽视用户的兴趣变化及反复性,影响了推荐质量。针对该问题,提出一种将指数遗忘权重和时间窗口相结合的算法,既突出了近期兴趣的重要性,又强调了反复出现的早期数据。建立基准标签集,根据指数偏移后的标签向量选出目标用户的最近邻居,通过目标用户时间窗内标记的资源计算其所有资源的推荐权重向量,结合推荐权重和资源相似度给出最近邻居标记资源的推荐分数,取分数最高的前K个资源做出推荐。仿真实验结果表明,改进后的算法能动态地跟踪、学习用户的兴趣变化,提高推荐精度。 相似文献
8.
协同过滤中基于用户兴趣度的相似性度量方法 总被引:2,自引:0,他引:2
在个性化推荐算法中,相似性计算方法是决定算法推荐效率的关键。通过分析传统的相似性度量方法在推荐系统中存在的不足,提出了一种基于用户兴趣度的相似性计算方法。该方法利用用户对不同项目类别的兴趣程度与用户评分相结合进行用户之间的相似性计算,克服了传统相似性计算方法仅仅依据用户评分进行相似性计算的不足,并在一定程度上减少了评价数据稀疏的负面影响。实验结果表明,该方法可以有效地克服传统相似性方法中存在的不足,使推荐系统的推荐质量有明显提高。 相似文献
9.
10.
协同过滤系统是目前最成功的一种推荐系统,但是传统的协同过滤算法没有考虑用户兴趣会随时间发生变化以及类似特征用户对用户相似度精度具有影响等因素,导致推荐质量较差。该文结合用户兴趣变化和用户特征两个因素,提出了新的用户之间相似度计算方法用来提高协同过滤推荐质量。 相似文献
11.
针对传统协同过滤算法中存在数据稀疏问题,提出融合协同过滤的线性回归推荐算法。根据用户对项目的评分以及用户和项目自身特征,构建用户间和项目间相似矩阵。基于相似矩阵,选出用户和项目最近邻集合,分别通过基于用户和基于项目的协同过滤算法来预测用户已评分项目的评分,将预测评分与真实评分的差值作为特征,组合在一起生成新的训练数据。把新的训练数据作为线性回归模型的输入,根据训练好的模型预测未知评分,采用Top-N算法产生推荐列表。在MovieLens数据集上进行实验。实验结果表明,新算法的推荐准确性较传统协同过滤算法有显著提高。 相似文献
12.
13.
协同过滤算法应用于个性化推荐系统中取得了巨大成功,它是通过用户项目评分数据,以用户之间或者项目之间相互协作的方式来产生推荐。然而,邻居用户的相似度计算不精确一直是阻碍推荐系统推荐精度进一步提高的主要因素。从提高用户间相似度计算精度出发,提出了一种改进算法,该算法通过考虑不同特征、加强平均值影响、惩罚热门项目的比重,对用户的相似度计算方法进行改进,以期生成更加合理的邻居用户集,最后,根据评分预测公式进行预测,最终产生推荐。在MovieLens数据集上的实验表明,改进算法计算用户间的相似度更加精确,推荐算法的预测精确度有了显著提高。 相似文献
14.
协同过滤的一种个性化推荐算法研究 总被引:7,自引:4,他引:3
在分析传统推荐算法不足的基础上,提出一种稀疏矩阵下的个性化改进策略.首先进行一对一的个性化预测,得到虚拟用户评分矩阵,在此基础上再进行综合预测.该方法避免了传统推荐算法中推荐值与用户相似度不密切相关的弊端,提高了协同过滤的预测精度,尤其是在矩阵极端稀疏情况下的预测精度.最后通过实验验证了算法的有效性和优越性. 相似文献
15.
协同过滤是迄今为止个性化推荐系统中采用最广泛最成功的推荐技术,但现有方法是将用户不同时间的兴趣等同考虑,时效性不足,而且推荐精度也有待进一步提高。鉴于此提出一种改进的协同过滤算法,针对用户近邻计算和项目评分的预测两个关键步骤,提出基于项目相关性的用户相似性计算方法,以便邻居用户更准确,同时在预测评分的过程中增加时间权限,使得接近采集时间的点击兴趣在推荐过程中具有更大权值。实验结果表明,该算法在提高了推荐精度的同时实现了实时推荐。 相似文献