首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
华乃震 《世界农药》2022,(7):19-28+46
论述开发增效悬浮剂的必要性、增效助剂种类、加工难点、增效悬浮剂应用性能和效果。指出选择合适和有效的助剂,即添加低表面张力表面活性剂或油类助剂到悬浮剂配方中,是可以制得稳定的增效悬浮剂单包装产品的。该产品应用时,可增强药剂在靶标上的润湿、展布、黏附能力、渗透性能和耐雨水冲刷能力,从而提高药效;同时避免了用户施药前使用桶混助剂带来的不便。  相似文献   

2.
APG对草甘膦的增效作用及机理探讨   总被引:4,自引:1,他引:3  
对新型环保农药助剂烷基葡萄糖甘(APG)对草甘膦的增效作用进行研究,并从APG的本身性能、草甘膦添加APG前后的应用性能、施药后叶面的SEM图以及与其他同类制剂比较等方面探讨增效机理.结果表明APG对草甘膦具有优异的增效作用.这种优异的增效作用与其制剂具有良好的润湿性有直接的关系,也与APG能溶解、溶涨或破坏植物上表皮蜡质层.促进药剂渗透,增加药剂在亲脂的角质层中的溶解性,特别是APG能够诱导草甘膦直接经气孔被植物吸收等有一定关系.  相似文献   

3.
《农药》2019,(12)
[目的]为了探究螺螨酯、噻虫嗪桶混矿物油对柑橘全爪螨和柑橘木虱的增效和减量作用,为农药减量增效使用提供理论支撑。[方法]以螺螨酯、噻虫嗪常量、减量30%桶混矿物油助剂田间测试其增效作用、减量作用。[结果]添加助剂矿物油后,螺螨酯速效性、持效性增强,药后1、3 d,螺螨酯减量30%的防效高于单剂减量和单剂常量,其他各调查时段添加助剂防效均显著高于单剂。添加矿物油后,药后3 d,噻虫嗪常量防效可提高3%,减量的防效可提高约6%。[结论]添加矿物油可以减少螺螨酯、噻虫嗪的使用量,具有减量增效作用。  相似文献   

4.
为了明确桶混助剂对吡唑醚菌酯防治黄瓜靶斑病的调控作用,本研究结合助剂的结构特点,探究了SP-4806、SY-A、SY-B、SY-C等4种桶混助剂对25%吡唑醚菌酯悬浮剂对靶沉积界面性能、黄瓜体内吸收传导性能以及对黄瓜靶斑病防效的影响。试验结果表明,4种助剂均能降低表面张力、接触角,增强润湿渗透性能,促进25%吡唑醚菌酯悬浮剂在黄瓜体内向上传导作用,且助剂SP-4806对25%吡唑醚菌酯悬浮剂在黄瓜体内向下传导具有显著促进作用。4种桶混助剂均不同程度促进25%吡唑醚菌酯悬浮剂对黄瓜靶斑病的防效,其中添加助剂SP-4806处理的防效较25%吡唑醚菌酯悬浮剂显著提高,药后9 d防效分别为76.76%。本研究结果可为桶混助剂对25%吡唑醚菌酯悬浮剂应用于防治黄瓜靶斑病提供参考。  相似文献   

5.
桶混助剂又称作喷雾助剂,是一种农药使用时与制剂产品搭配使用,现混现用的助剂.桶混助剂种类和功能多样,科学合理使用桶混助剂是实现农药减量增效,提高农药利用率的最有效手段之一.笔者对我国农药桶混助剂的开发、性能测试、质量控制和技术应用做了全面介绍,并对桶混助剂可能涉及的相关管理法规和未来发展趋势做了分析.这对于桶混助剂的开...  相似文献   

6.
胡椒基丁醚对2种杀虫药剂防治菜青虫的增效作用   总被引:1,自引:0,他引:1  
《农药》2018,(11)
[目的]评价胡椒基丁醚对四氯虫酰胺和高效氯氰菊酯防治菜青虫的增效作用。[方法]田间试验采用喷雾法。[结果]药后1 d胡椒基丁醚对四氯虫酰胺和高效氯氰菊酯都有显著的增效作用,在药后3、7、14 d无增效作用。与胡椒基丁醚预处理后再施药相比,胡椒基丁醚与药剂桶混施药的防效差异不显著。[结论]胡椒基丁醚对四氯虫酰胺和高效氯氰菊酯防治菜青虫在短时间内具有显著的增效作用,且增效作用与胡椒基丁醚的使用方式无关。  相似文献   

7.
[目的]筛选出桶混助剂JZ-12与40%氰氟草酯OD和10%(口恶)唑酰草胺EC混合后显著增加药效,减少有效成分用量的最佳比例,并明确其增效机制.[方法]试验以实验室研发的JZ-12桶混助剂为样本,稻稗为供试植株,采用整株生物测定法、液滴性质检测手段及扫描电子显微镜等方法,对增效机制进行了探究.[结果]JZ-12与2种...  相似文献   

8.
[目的]探索桶混助剂对30%螺虫乙酯·噻虫胺悬浮剂的增效作用。[方法]以桃叶为靶标,测定SP-017助剂、Silwet 806、罗普瑞助剂对30%螺虫乙酯·噻虫胺悬浮剂表面张力、接触角、持留量等指标的影响,并进行桃树桑白蚧药效试验。[结果]30%螺虫乙酯·噻虫胺悬浮剂桶混罗普瑞助剂后,表面张力与接触角均减小,持留量增加。罗普瑞助剂以667~1000 mg/L(制剂用量)桶混使用时,对桃树桑白蚧的防效显著提升。[结论]罗普瑞助剂可显著增强30%螺虫乙酯·噻虫胺悬浮剂的防效。  相似文献   

9.
温室盆栽法测定的除草活性试验结果表明,34.5%丙炔噁草酮悬浮剂及其不同桶混助剂配伍对水稻稗草和碎米莎杂草有较好的除草活性,特别是加入桶混助剂GY-Tmax的34.5%丙炔噁草酮悬浮剂在试验中产生较显著的增效作用。  相似文献   

10.
凌进 《安徽化工》2015,(1):83-84
温室盆栽法测定除草活性试验结果表明,380g/L噁草酮悬浮剂及其不同桶混助剂配伍对水稻稗草有较好的除草活性,特别是加入桶混助剂GY—Hba S2#的380g/L噁草酮悬浮剂在试验中产生较显著的增效作用。  相似文献   

11.
Contact angle and surface tension were measured for distilled and hard water solutions of adjuvants, Ortho X-77, Span-20, Sterox-NJ. Surfactant-WK, Triton B-1956, Triton X-114, Tween-20, and Sun Oil 11E. The same parameters were measured for suspensions of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] and ametryne [2-(ethylamino)-4-(isopropylamino)-6-(methylthio)-s-triazine] with and without each adjuvant. All adjuvants reduced surface tension and contact angle of distilled water; Surfactant-WK was most effective and Tween-20 was least effective. Increasing concentration of surfactants from 0 to 0.1% (v/v) gave progressive reduction in surface tension and contact angle while higher concentrations, 0.1 to 2.0% (v/v), had no further effect. Surfactant-WK at 0.1% (v/v) in distilled water reduced the surfact tension from 72.8 dynes/cm to 27 dynes/cm and contact angle from 110° to 41°. An additional increase in Surfactant-WK concentration from 0.1% (v/v) to 2% (v/v) did not further reduce surface tension and contact angle. Sun Oil 11E was identical in behavior except that it was less effective than the surfactants. Water hardness up to 1,000 ppm as Ca ions did not affect surface tension and contact angle in surfactant solutions. An aqueous solution of atrazine had a higher surface tension and contact angle than ametryne in the absence of surfactants. However, these differences were not observed when surfactants were added to either herbicide.  相似文献   

12.
以古城油田稠油乳状液为研究对象,针对稠油脱水处理问题,通过稠油高效破乳剂的室内筛选试验研究,减少稠油药剂投加量及满足含水、水质要求。测定了7种破乳剂对含水20%稠油的脱水效果,破乳剂Z61和A-20的脱水效果均优于其他破乳剂。随后进行了低温稠油破乳剂试验,对破乳剂进行了精选,同时开展了投加温度对破乳效果影响的研究试验。通过试验和分析得出,Z61优于A-20药剂;结合单个站点的试验情况,建议净水药剂的投加浓度为50 mg/L,具体的增减视分离器出水和2 000 m~3污水缓冲罐进口水质而定。  相似文献   

13.
Fluid penetration through porous networks consists of two different phenomena: (1) pore fluid displacement and (2) fluid flow through the pores. The first phenomenon depends on the pore size, the fluid–fluid interfacial tension, and the contact angle. The second phenomenon is pore‐size‐ and viscosity‐dependent. We adapted an experimental methodology often used for measurements of liquid permeability and hydraulic conductivity of soils and applied it to polymeric medical textiles. The methodology made use of a pressure/flow cell in which a sample was mounted. The flow rates were measured during sequences of increasing and decreasing pressures applied to the displacing nonwetting fluid (aqueous solution). The effects of the liquid parameters on penetration were investigated. Surface tension effects were studied with water and two solutions with surface tensions lower than that of pure water; the liquids with lower surface tensions had lower displacement pressures. To study viscosity effects, we used water and two solutions with viscosities higher than that of pure water. Increasing the viscosity not only caused the flow rate to decrease but also caused deformation, that is, enlargement, of the pores. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 282–292, 2005  相似文献   

14.
摘要:本文针对目前市场上应用的玻璃钢缠绕贮罐部分存在着渗漏的情况,以及如何消除这些问题,切实避免玻璃钢贮罐的渗漏,提出了自己的见解.  相似文献   

15.
Here, we present experimental surface tension isotherms of mixed solutions of a zwitterionic surfactant α-decylbetaine (DB) and an anionic surfactant sodium dodecyl sulfate (SDS) in different molar ratios. These mixed solutions show a composition dependency with respect to both surface tension effectiveness and critical micelle concentration. The pseudo-regular solution theory has been used to evaluate the interaction parameters in the micelle, β m and at the surface, β s. The results revealed that the mixed solutions of DB/SDS behave synergistically in both surface tension reduction effectiveness and mixed micelle formation at all mole fractions investigated. The values of adsorption area per surfactant molecule at air/solution interface were estimated, which provides some useful information on evaluating the interaction between DB and SDS in mixed adsorbed monolayers. The solubilization behaviors of toluene in DB/SDS mixed solutions were also investigated to help in understanding the structure of mixed micelles of DB and SDS.  相似文献   

16.
Mixtures of trisiloxane type nonionic silicone surfactant (SS) with sodium dodecylsulfate, tetradecyltrimethylammonium bromide or tert-octylphenol ethoxylated with 9.5 ethylene oxide groups were studied in water at 30 °C by dilute aqueous solution phase diagrams, surface tension and dilute solution viscosity methods. The cloud points for the silicone surfactant aqueous solutions increased upon addition of hydrocarbon surfactants indicating the formation of hydrophilic complexes in mixture solutions. The scrutiny of the surface tension isotherms plotted as a function of SS concentration revealed that competitive adsorption effects are the characteristic features in these mixtures depending upon the SS concentration. Otherwise the isotherms exhibited two break points and the difference of concentration between the two break points increased with the increase in SS concentration indicating the cooperative nature of interactions. The micellar mole fractions of individual surfactants were determined by Rublingh's regular solution theory; interaction parameters and activity coefficients were evaluated and interpreted in terms of synergistic type interactions in these mixtures. The surface active parameters in mixture solutions were estimated and their analysis shows that the molecular species in the mixture solutions have a preferential tendency for adsorption at the air/water interface than in association form in the bulk solution. The effect of hydrocarbon surfactants on the intrinsic viscosity of SS micelles was monitored and related to the enhanced hydration in mixed micelles.  相似文献   

17.
综述了硅烷化聚氨酯(SPU)密封胶的性能优势和特点,研究硅烷化聚氨酯、填料和黏附促进剂三者对高强度硅烷化聚氨酯密封胶性能的影响。结果表明:中模量的SPUR1、SPUR2树脂和高模量的SPUR3以1∶6的质量比例进行复配使用时,密封胶的强度和断裂伸长率都能满足应用要求;偶联剂A-1100和A-1120进行等量混合使用后,密封胶的固化速率和力学性能都能取得相对较佳效果;在纳米碳酸钙用量占总配方量的50%~60%时,密封胶的补强性及工艺操作性取得最佳平衡。最后介绍了高强度硅烷化聚氨酯密封胶的应用前景。  相似文献   

18.
表面活性剂在花岗岩研磨中的物理化学作用   总被引:1,自引:0,他引:1  
花岗岩研磨过程中添加含不同类型表面活性剂的磨削液。测量添加不同表面活性剂及不同浓度的磨削液时花岗岩的磨削比 ,分析比较磨削液浓度及表面活性剂对花岗岩研磨效率的影响。通过测量磨削液的表面张力、磨削液作用后的花岗岩表面电位等参数 ,研究了表面活性剂对花岗岩研磨过程的物理化学作用机理。实验结果表明 :与水比较 ,表面活性剂磨削液能明显提高花岗岩研磨效率 ;阳离子型表面活性剂的磨削液对研磨效率的提高效果优于阴离子型和非离子型的表面活性剂磨削液 ;研磨盘的粒度越细 ,表面活性剂的作用效果越明显。  相似文献   

19.
The synergistic behavior of sodium dodecylbenzene sulfonate (SDBS) with poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) block copolymer was studied using surface tension measurements. The surface tension of single and mixed solutions of SDBS and the block copolymer in this study was measured at different concentrations and at 25 °C. The critical micelle concentration (CMC) of these solutions was determined from the surface tension measurements. The SDBS gives higher CMC values than those of the block copolymer. The results show that the CMC value of SDBS decreases as the molar ratio of SDBS increases in the mixture solution with the block copolymer. The surface parameters of adsorption and micellization for single and mixed solutions were investigated. The results show that the surface and micellization properties of SDBS were improved as a result of mixing with the block copolymer. The mole fractions in the micelles and interaction parameters of the mixed solutions were calculated. The foam stability of single and mixed solutions at 25 °C was determined. The results show that the SDBS has more foam stability than the block copolymer and the foam stability increases as the molar ratio of SDBS increase in mixed solution of it with block copolymer.
E. M. S. AzzamEmail:
  相似文献   

20.
翟甜  郝惠娣  秦佩  冯荣荣  马腾 《广东化工》2012,39(11):29-30
运用计算流体动力学(CFD)方法对双层桨搅拌槽内部流场进行数值模拟。考察了流体在不同桨叶类型、不同桨叶间距对搅拌槽内宏观流动场的影响。研究发现:流体在桨叶间距为150 mm的双层桨内部流场流动效果好。在此间距的基础上得出流体在六圆盘上斜叶桨的搅拌槽内比六圆盘直叶桨搅拌槽内混合效果好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号