首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene (tk) is one of the most effective gene therapy strategies for solid tumors in experimental animal studies. Foundational animal studies in an oral cancer model have demonstrated significant antitumor effects and improved animal survival using this treatment strategy. OBJECTIVE: To assess the safety of adenovirus-mediated transfer of the herpes simplex virus tk gene for the treatment of oral cancer. DESIGN: Oral tumors were established in C3H/HeJ mice and were treated with tk followed by systemic ganciclovir administration. Polymerase chain reaction amplification techniques were used to screen local surrounding tissues and distant organs for the presence of the adenoviral construct. Microscopic examination of the tissues was performed to determine the cytopathic effects of the vector. Blood samples were obtained from the animals to test for liver, renal, and bone marrow function after treatment. RESULTS: The adenoviral vector was present in the livers, lungs, and kidneys of animals treated with the maximal single injection dose of 2 x 10(9) plaque forming units (pfu). No vector was noted systemically after delivery of an equally effective low dose of 1 x 10(8) pfu. Microscopic examination revealed no cytopathic effects in distant organs despite the presence of vector. Results of liver and renal function tests revealed no differences between treated and control animals. There was no statistical difference in white blood cell count, hematocrit, or platelet count between animals treated with ganciclovir and control animals. CONCLUSIONS: Based on these results, the direct delivery of adenovirus-tk followed by ganciclovir administration appears both efficacious and safe in an animal model. However, serum evaluation for adenovirus vector and screening organ function studies should be included in human protocols using this gene therapy scheme.  相似文献   

2.
We have evaluated the feasibility of gene transduction using replication-defective adenovirus vector as a novel therapy for medullary thyroid carcinoma (MTC), a thyroid C cell neoplasm. Replication-defective adenoviruses were constructed to express murine interleukin-2 (mIL-2) gene and Escherichia coli beta-galactosidase (beta-gal; lacZ) gene under the control of the human cytomegalovirus (CMV) promoter (AdCMVmIL2, AdCMVbeta-gal) by homologous recombination. The efficiency of transduction was evaluated using AdCMVbeta-gal at different conditions. The gene transduction efficiency was dependent on multiplicity of infection, duration of exposure to the virus, and viral concentration. The expression of functional mIL-2 in transduced tumor cells was verified both in vitro and in vivo. Two cell lines (rat MTC and mMTC) secreted large amounts of functional mIL-2 after transduction, as tested in cytotoxic T lymphocyte (CTL) L-2 cells. When AdCMVmIL2-infected mMTC cells were injected s.c. into their host animals, tumors developed in 2 of 10 animals, in contrast to 9 of 10 animals injected with AdCMVbeta-gal-infected mMTC cells and all 10 animals injected with parental mMTC cells. Moreover protected animals developed a long lasting immunity against mMTC tumor cells and their splenocytes, showing cytotoxicity to parental tumor cells, and active natural killer (NK) cell activity. BALB/c-SCID (severe combined immune deficiency) mice were also used to evaluate the function of NK cells in antitumor activities. No tumor developed in SCID mice injected with AdCMVmIL2-infected cells, whereas all animals injected with either AdCMVbeta-gal-infected or parental mMTC cells developed tumors. Our data indicate that IL-2 production by MTC cells leads to rejection in syngeneic animals and suggest that both cytotoxic T cells and NK cells may play an important role. In addition, transduction of adenoviral vectors into tumor cells produces some nonspecific antitumor effects.  相似文献   

3.
We have studied the ability of adenoviral (Ad) vectors expressing the cytokines IL-2 or IL-12 to mediate regression of established tumors in a mouse model of mammary adenocarcinoma. Previous results indicated that intratumoral injection of vectors expressing IL-2 (AdCAIL-2), or IL-12 (AdmIL-12.1) induced complete tumor regression in approximately 30-40% of treated animals. In the current studies, we investigated the mechanism of tumor killing in responding animals and the efficacy of AdIL-2 and AdIL-12 vector administration in combination compared with the use of either vector alone. Animals bearing subcutaneous mammary tumors were injected intratumorally with Ad vectors expressing IL-2 or IL-12 or were coinjected with both vectors. Animals receiving the combination treatment responded substantially better than animals which had received either vector alone, with 65% of animals treated with both vectors undergoing complete tumor regression. In all three treatment regimens, tumor regression was associated with the presence of specific antitumor antigen cytotoxic T-lymphocytes (CTLs), which secreted elevated levels of IFN-gamma. Consistent with circulating CTLs being involved in regression, when animals bearing bilateral tumors were inoculated in a single tumor with IL-2 or IL-12 expressing vectors, both tumors regressed in many cases. Again, treatment with both AdCAIL-2 and AdmIL-12.1 was most effective, with 63% of animals undergoing complete regression of both treated and untreated tumors, compared to 18 or 22% of animals injected with either AdCAIL-2 or AdmIL-12.1 alone. These data indicate that the combination of IL-2 and IL-12 is a more effective inducer of antitumor immune responses than either one alone, and that the resulting antitumor responses are effective in mediating the regression of distal untreated tumors, a property which may aid in the treatment of metastatic disease.  相似文献   

4.
Treatment of colorectal liver metastases with the HSVtk/GCV approach and adenoviral vectors is highly toxic. We present a nontoxic alternative using the cell type-specific CEA promoter instead of the widely used hCMV immediate-early promoter to drive tk gene expression in the context of a recombinant adenovirus. Analysis of CEA promoter-dependent tk gene expression showed significant activity of this promoter in several human and rat tumor-derived cell lines but not in rat primary hepatocytes and in mouse liver, whereas the CMV promoter was highly active in all cell types and tissues investigated. CEA promoter-dependent tk gene expression was sufficient to kill 100% of cancer cells in vitro, even if less than 10% were infected by the adenoviral vector, indicating a significant bystander effect. Moreover, treatment of subcutaneous tumors in SCID mice with Ad.CEA-tk led to a several-fold reduction of tumor growth, and tail vein injection of a high dose of Ad.CEA-tk caused no side-effects in the liver. The CMV promoter was more potent than the CEA promoter in mediating GCV sensitivity to cancer cells in vitro and in vivo, but even a 20-fold reduction of the dose of Ad.CMV-tk did not prevent its liver cell toxicity after systemic application to mice and still resulted in the death of all animals within 4 days after the start of GCV treatment. These results indicate that restriction of tk gene expression to tumor cells in the liver prevents systemic toxicity. Moreover, the CEA promoter is a safe and efficient tool for tumor cell-specific expression of suicide genes in the liver.  相似文献   

5.
Metastases of lung cancer are a major cause of treatment failure. To evaluate the therapeutic efficacy of gene therapy in metastatic lung cancer, we used adenoviral (ADV) mediated transfer of the herpes simplex virus thymidine kinase (HSV-tk) gene and the cytokine gene interleukin-2 (IL-2) to treat a murine model of metastatic lung cancer in the liver. Hepatic metastases were established by intrahepatic implantation of LL2 cells in syngeneic recipient mice. One week after tumor implantation, various replication defective ADV vectors were injected intratumorally. Treatment with a vector expressing the HSV-tk followed by ganciclovir administration with ADV.tk resulted in significant regression of tumor (p<0.01) as well as prolongation of survival (p<0.001). While a vector expressing mouse IL-2 ADV.IL-2 alone was ineffective, combination therapy with HSV-tk resulted in further tumor regression and improvement of animal survival (p<0.05). These results demonstrate that suicide and cytokine genes can be utilized in combination to treat metastatic lung cancer in vivo.  相似文献   

6.
Stimulation of antitumor immune mechanisms is the primary goal of cancer immunotherapy, and accumulating evidence suggests that effective alteration of the host-tumor relationship involves immunomodulating cytokines and also the presence of costimulatory molecules. To examine the antitumor effect of direct in vivo gene transfer of murine interleukin 12 (IL-12) and B7-1 into tumors, we developed an adenovirus (Ad) vector, AdIL12-B7-1, that encodes the two IL-12 subunits in early region 1 (E1) and the B7-1 gene in E3 under control of the murine cytomegalovirus promoter. This vector expressed high levels of IL-12 and B7-1 in infected murine and human cell lines and in primary murine tumor cells. In mice bearing tumors derived from a transgenic mouse mammary adenocarcinoma, a single intratumoral injection with a low dose (2.5 x 10(7) pfu/mouse) of AdIL12-B7-1 mediated complete regression in 70% of treated animals. By contrast, administration of a similar dose of recombinant virus encoding IL-12 or B7-1 alone resulted in only a delay in tumor growth. Interestingly, coinjection of two different viruses expressing either IL-12 or B7-1 induced complete tumor regression in only 30% of animals treated at this dose. Significantly, cured animals remained tumor free after rechallenge with fresh tumor cells, suggesting that protective immunity had been induced by treatment with AdIL12-B7-1. These results support the use of Ad vectors as a highly efficient delivery system for synergistically acting molecules and show that the combination of IL-12 and B7-1 within a single Ad vector might be a promising approach for in vivo cancer therapy.  相似文献   

7.
8.
Metastases of breast cancer are a major cause of treatment failure. To evaluate the therapeutic efficacy of suicide gene therapy in metastatic breast cancer, we used the herpes simplex virus thymidine kinase (HSV-tk) gene followed by ganciclovir (GCV) administration to treat breast cancer, generated by an adenocarcinoma cell line MOD in syngeneic mice. The bystander effect of HSV-tk + GCV on tumor cell killing was illustrated by demonstrating complete regression of subcutaneous tumors consisting of 90% parental tumor cells and 10% HSV-tk transformed tumor cells. To establish a model of breast cancer metastases in the liver, tumors were generated by intra-hepatic implantation of MOD cells in syngeneic animals. Two weeks after tumor cell implantation, replication defective adenoviral vectors expressing HSV-tk (ADV.tk), or beta-galactosidease (ADV. beta-Gal) were injected intratumorally, followed by buffer or GCV administration. Treatment with ADV.tk + GCV resulted in significant regression of tumor (P < .001), as assessed by computerized morphometric analysis of residual tumor. This was reflected as a significant prolongation of survival in treated animals (P < .001). These results demonstrate that ADV-mediated suicide gene therapy in vivo can be incorporated in a comprehensive treatment strategy for liver metastases of breast cancer.  相似文献   

9.
The pancreas is an ideal organ for adenoviral gene therapy because of the high level of gene transfer that can be achieved and because of the many diseases that can potentially be treated using this technology. In this report, we characterize the immune response to direct pancreatic injection of adenovirus and we overcome some of the limitations it imposes by using immunosuppression. Direct injection of recombinant adenovirus into the pancreas leads to the production of neutralizing antibodies and to sensitized splenocytes which engage in increased cytotoxic, lymphoproliferative, and cytokine release activity when reexposed to adenovirus. Transgene expression is transient and the vector cannot be readministered. Deletion of CD4+ T helper cells improves expression over time (40% of pancreatic cells express transgene at day 28 vs. 5% in controls), and allows the vector to be readministered in the pancreas, albeit, inefficiently, when compared to naive animals. Similarly, blockade of CD40 ligand, which preserves the CD4+ T helper cell population, also improves expression over time (30% of pancreatic cells express transgene at day 28), and allows the vector to be readministered. With both approaches, neutralizing antibodies are decreased and the remaining splenocytes do not engage in activated immune responses. Thus, local delivery of the adenoviral vector induces a systemic response that prevents pancreatic readministration, even with direct injection. Blockade of CD40 ligand and T helper cell depletion are transient regimens that induce systemic immunosuppression. Until the development of newer strategies that selectively suppress adenoviral immune responses, these are viable alternatives for enhancement of pancreatic adenoviral delivery.  相似文献   

10.
The herpes simplex virus-thymidine kinase/ganciclovir (HSVtk/GCV) system produces both direct and immune-mediated tumor cell killing. Here, we compare the efficacy of HSVtk/GCV with cytokines, alone and in combination, on the tumorigenicity and immunogenicity of B16 cells. With respect to single gene modifications, only HSVtk/GCV, or high-level interleukin-2 (IL-2) secretion, completely prevented tumor growth, whereas granulocyte-macrophage colony-stimulating factor (GM-CSF) generated the best levels of long-term systemic protection. To augment both local killing and immune activation, we constructed bicistronic constructs that express HSVtk and a cytokine within the same cell. Co-expression of HSVtk with IL-2 or GM-CSF enhanced the local antitumor activity of any gene alone. In a tumor-prevention model, HSVtk killing, in an environment preprimed with GM-CSF, generated the best long-term immune protection. However, in a short-term therapy model, continued IL-2 expression was most effective against 3-day established tumors. This probably reflects differences in the activities of IL-2 and GM-CSF in generating short-term, nonspecific immune stimulation compared to long-term immunological memory, respectively. As a prelude to in vivo delivery experiments, we also demonstrated that these bicistronic cassettes can be packaged normally into retroviral (5 x 10(5) virus/ml from pooled populations) and adenoviral vectors (5 x 10(9) virus/ml) and function as predicted within virally infected cells. This family of bicistronic vectors can be used to stimulate synergy between suicide and cytokine genes, overcomes the problems of delivering two genes on separate vectors, and should allow easier preparation of vectors for the delivery of multiple genes to patients' tumor cells.  相似文献   

11.
In a cancer gene therapy model recombinant adenoviruses expressing the herpes simplex virus thymidine kinase (HSVtk) gene were injected into tumors in situ, either alone or in combination with adenoviruses (Avs) engineered to express IL-2, IL-6 or the costimulatory molecule B7-1. HSVtk phosphorylates the prodrug ganciclovir, thus converting it into an antimetabolite which kills not only HSVtk expressing cells, but also by the 'bystander effect', neighboring untransduced tumor cells. The tumors regressed in 80% of mice upon AvTK/ganciclovir treatment: combinations with AvIL-2, AvIL-6, or AvB7-1 did not improve these results. Cured mice were protected from further challenge with wild-type tumor but not from challenges with an unrelated syngeneic tumor cell line. Since cytotoxic T lymphocyte responses in this tumor model were weak, we analyzed cytokine secretion from spleen cells of treated animals. The best correlate of antitumor immunity in this model was enhanced secretion of GM-CSF, while secretion of IL-2, IL-6 and IFN gamma was also frequently increased but not as consistently. The enhanced IFN gamma secretion associated with unchanged IL-4 secretion suggests that AvTK treatment results in a predominantly Th1-mediated antitumor immune response.  相似文献   

12.
Multiple antitumor modalities may be necessary to overcome lung tumor-mediated immunosuppression and effectively treat non-small cell lung cancer (NSCLC). To evaluate a multimodality gene therapy approach for control of local tumor growth, a weakly immunogenic murine alveolar cell carcinoma, L1C2, was transduced with either the interleukin-7/hygromycin-herpes simplex thymidine kinase (IL-7/HyHSVtk) internal ribosome entry site (IRES) retroviral vector or a vector containing the HyHSVtk, but not the IL-7 gene. Of the many cytokines available for gene transfer, IL-7 was chosen for these studies because it both stimulates CTL responses and down-regulates tumor production of the immunosuppressive peptide TGF-beta. Following selection in hygromycin, IL-7 transduction was confirmed by ELISA. Clones produced 1.25 to 10 ng of IL-7/ml/10(6) cells per 24 h. In vitro, genetically modified tumor cells were significantly more sensitive to ganciclovir (GCV) than unmodified parental tumor cells. The in vivo growth of ex vivo modified L1C2 cells was evaluated. There was a dose-response relationship between the amount of IL-7 secreted in vitro and the growth of genetically modified murine tumor in vivo. Transduced tumor cells regressed in mice following GCV therapy. Although ex vivo gene modification of tumor cells led to complete resolution of the tumor following implantation in vivo, IL-7 and HSVtk gene modified tumor cells were not effective in treating established parental tumors. However when 5 x 10(5) bone marrow-derived, in vitro activated dendritic cells (DC) were administered in combination with transduced tumor and GCV, 5 day old established tumors were eradicated in 80% of mice. These studies suggest that multicomponent vaccines may facilitate improved host responses by replacing host immune deficits and thus could have a role in adjuvant therapy and local control of NSCLC.  相似文献   

13.
The antitumor effect of the combined transfer of a suicide gene and a cytokine gene was evaluated in the present study. Adenoviruses expressing Escherichia coli cytosine deaminase (AdCD) and adenoviruses expressing murine interleukin-2 (AdIL-2) were utilized for the treatment of established tumors. The mice were inoculated s.c. with FBL-3 erythroleukemia cells and 3 days later received an intratumoral injection of AdCD in the presence or absence of AdIL-2 followed by intraperitoneal 5-fluorocytosine (5-FC) administration. The results demonstrated that tumor-bearing mice treated with AdCD/5-FC in combination with AdIL-2 showed more potent inhibition of tumor growth and survived much longer than did mice treated with AdCD/5-FC, AdIL-2, adenovirus expressing beta-galactosidase/5-FC or phosphate-buffered saline. The tumor mass showed obvious necrosis and inflammatory cell infiltration, and more CD4+ and CD8+ T cells infiltrating the tumor after combined therapy. The splenic natural killer and cytotoxic T lymphocyte activities increased significantly in the mice after combined therapy with AdCD/5-FC/AdIL-2. Our results demonstrate that therapy combining a suicide gene and IL-2 gene can inhibit the growth of established tumors in mice significantly and induce antitumor immunity of the host efficiently.  相似文献   

14.
We have demonstrated that tumor irradiation enhanced the therapeutic effect of interleukin 2 (IL-2) on pulmonary metastases from a murine renal adenocarcinoma, Renca. To investigate the mechanism of interaction between tumor irradiation and IL-2 therapy, we have histologically evaluated the effects of each therapy alone or in combination on Renca pulmonary metastases. Following treatment of established lung metastases with irradiation and IL-2 therapy, lung sections were processed for H&E or immunohistochemical staining. We found that tumor irradiation or IL-2 therapy locally induced vascular damage, resulting in multifocal hemorrhages and mononuclear cell mobilization in the lung tissue. This effect was amplified in lungs treated with the combined therapy. Immunohistochemistry showed that irradiation produced a macrophage influx into irradiated tumor nodules, and systemic IL-2 therapy induced T-cell infiltration in tumor nodules. Lungs treated with the combined therapy exhibited massive macrophage, T-cell, and natural killer cell mobilization in disintegrating tumor nodules and in the lung tissue. This combined therapy caused a decrease in the number of proliferating tumor cells and an increase in the number of apoptotic cells, which were more marked than with either therapy alone. We suggest that the macrophages mobilized by radiation-induced tissue injury could play a role in phagocytosis of apoptotic tumor cells, processing and presenting of tumor antigens for a systemic immune response activated by IL-2. Tumor destruction may result from the concomitant action of activated T cells, natural killer cells, and macrophages infiltrating the tumor nodules.  相似文献   

15.
Down-regulation of oncogene expression by antisense-based gene therapy has been extensively studied, and in some cases, therapeutic effects have been demonstrated. We have previously shown that down-regulation of HPV16 E6 and E7 gene expression inhibited HPV DNA-positive C3 mouse tumor growth. Although not all of the tumor cells were transfected by pU6E7AS plasmid, complete tumor regression was achieved if the tumor size was small at the start of therapy in a syngeneic host. This suggests that some other antitumor mechanisms may be involved in addition to the direct down-regulation of HPV16 E7 oncogene expression by the antisense effect of E7AS. In the current study, we demonstrated that E7AS induces tumor cell apoptosis. More importantly, a strong antitumor immune response was elicited in the pU6E7AS-treated and tumor-regressed mice. There was no tumor growth after rechallenging the tumor-regressed mice with 1 million C3 cells. This E7AS-induced antitumor immune response was augmented by co-delivery of mIL-12 cytokine gene. The combination therapy strategy resulted in complete regression of 26 of 28 (93%) tumors. Only 12 of 31 (38%) tumors from the group treated with pU6E7AS alone and 14 of 28 (50%) tumors from the group treated with pCMVmIL-12 alone had completely regressed. Complete regression was also demonstrated in tumors located 1 cm from the treated tumors, which indicates that a systemic antitumor effect was induced by E7AS and mIL-12. Immunohistochemistry demonstrated that a significant amount of CD4+ and CD8+ cells infiltrated into tumors treated with pU6E7AS, pCMVmIL-12 and pU6E7AS+pCMVmIL-12. These data indicate that host immunity is an important factor for antisense-based gene therapy approach which can be further enhanced by combination with cytokine gene therapy.  相似文献   

16.
Cyclophosphamide is an inactive prodrug which is converted by hepatic cytochrome P450 2B1 to cytotoxic metabolites which produce interstrand DNA cross-linking in a cell cycle-independent fashion. The limited ability of these metabolites to cross the blood-brain barrier contributes to the poor activity of cyclophosphamide against brain tumors. In this study we demonstrate that replication deficient retroviral and adenoviral vector-mediated gene transfer of cytochrome P450 2B1 into 9L glioma cells significantly increases the sensitivity of these tumor cells to cyclophosphamide in vitro, and prolongs the survival of animals bearing intracerebral 9L tumors treated with cyclophosphamide in vivo. Attempts to improve the effectiveness of retrovirally mediated transduction of the P450 2B1 gene by increasing the concentration of cyclophosphamide delivered to the tumors using intracarotid and intratumoral injections did not prolong animal survival, although survival was increased when a second treatment with P450-expressing retroviral vectors and cyclophosphamide was administered. These results suggest that in situ transduction of tumor cells with the P450 2B1 gene using retroviral and adenoviral vectors increases their sensitivity to cyclophosphamide and may have a potential role in the therapy of malignant gliomas.  相似文献   

17.
BACKGROUND: Cytokine genes encode proteins that modulate immune system responses. Modification of tumor cells by the introduction of cytokine genes has been used as a strategy to augment host immunity. Interleukin 7 (IL-7) gene transfer enhances the immune response to tumor cells and can result in tumor regression. Transforming growth factor-beta 1 (TGF-beta 1) is a potent immunosuppressive cytokine produced by many tumors. We have previously reported that recombinant IL-7 decreases the expression of TGF-beta 1 by murine macrophages. PURPOSE: This study investigates the inhibition of tumor-derived TGF-beta 1 production as a possible mechanism for the enhanced antitumor immunity that accompanies IL-7 gene transfer. METHODS: A fibrosarcoma cell line (FSA-JmIL-7) genetically modified to produce IL-7 was used to evaluate the effects of IL-7 on tumor production of TGF-beta 1. The control cell line (FSA-Jneo) originated from the same parental fibrosarcoma cell line (FSA) and was produced by transduction with the same retroviral vector without the IL-7 gene. FSA-Jneo and FSA-JmIL-7 tumor cells were evaluated for the expression of TGF-beta 1 messenger RNA (mRNA). To determine if the observed change in TGF-beta 1 mRNA was associated with an alteration in protein secretion, we compared supernatants from tumor cell cultures for TGF-beta 1 production. Specific anti-TGF-beta 1 monoclonal antibody (MAb) was used to confirm the role of TGF-beta 1 in these assays. RESULTS: Compared with FSA parental and FSA-Jneo cells, FSA-JmIL-7 cells expressed TGF-beta 1 mRNA at a lower level. Compared with supernatants from FSA-Jneo cells, FSA-JmIL-7 supernatants contained consistently lower levels of TGF-beta 1 activity (P < .05). In addition, FSA-Jneo supernatants suppressed lymphocyte proliferation to a significantly greater degree than supernatants from FSA-JmIL-7 cells (P < .05). Studies with anti-TGF-beta 1 MAb added to the supernatants confirmed the role of TGF-beta 1 in inhibition of lymphocyte proliferation. CONCLUSION: These findings suggest that IL-7 gene transfer inhibits the production of TGF-beta 1 by tumor cells and thus may enhance the efficacy of the host's antitumor immune response. IMPLICATION: The regulation of endogenous tumor-derived cytokines in response to cytokine gene transfer may contribute to altered immune responses in the tumor microenvironment and thus may be an important additional parameter to assess in gene therapy.  相似文献   

18.
Lung cancer, the leading cause of cancer death in the United States, is resistant to most currently available therapies. To evaluate a multicomponent gene therapy approach that replaces tumor-bearing host immune deficits, we genetically modified Line 1 (L1C2), a weakly immunogenic alveolar cell carcinoma cell line. L1C2 was transduced ex vivo with a retroviral construct that contained two components: a cytokine gene (granulocyte-macrophage colony-stimulating factor) and a drug sensitivity gene (herpes simplex virus thymidine kinase). The third component of this therapy, in vitro-activated syngeneic bone marrow-derived dendritic cells, was included to augment antigen presentation. The addition of ganciclovir (GCV) caused the lysis of transduced tumor cells, resulting in the release of potential tumor antigens. Ex vivo-transduced tumor cells regressed in vivo following GCV therapy but were not effective in the treatment of established parental tumors. To treat established tumors, dendritic cells were administered in combination with transduced tumor cells and GCV. A total of 50% of these mice rejected the 5-day-old established tumors and were immune to rechallenge with parental L1C2 cells. Thus, this multicomponent gene therapy system leads to both the regression of established tumors and enhanced immunogenicity in this weakly immunogenic murine lung cancer model.  相似文献   

19.
This study examines the effects of interleukin-10 (IL-10) and combination IL-10 + IL-2 gene transfer on experimental brain tumor growth in vivo. 9L gliosarcoma cells were engineered to stably express murine IL-10 (9L-IL-10 cells) and implanted subcutaneously or to the caudate/putamen of syngeneic rats. The growth of tumors expressing IL-10 was substantially reduced compared to that of control tumors (p < 0.05). Intracranial tumors expressing IL-10 and IL-2 were established by co-implanting 9L-IL-10 cells with endothelial cells engineered to express IL-2. At 14 days post-implantation, tumors expressing IL-10 + IL-2 were 99% smaller than control-transfected tumors (p < 0.0001). This extent of anti-tumor effect could not be achieved by expression of IL-10 or IL-2 alone within tumors. Neither IL-10 nor a combination of IL-10 + IL-2 gene delivery inhibited tumor growth in severe combined immunodeficient (SCID-Beige) mice (p > 0.05). Immunohistochemical analysis revealed that IL-10 + IL-2 gene delivery markedly increased T-cell infiltration within the striatum ipsilateral to tumor cell implantation. These findings establish that IL-10 expression, particularly in combination with IL-2 expression, can have significant immune-dependent anti-tumor actions within intracranial gliomas.  相似文献   

20.
Two aspects of cytokine therapy of intracerebral tumors are considered in this study: modulation of tumor growth in vivo and central nervous system toxicity. Coimplantation of RG-2 glioma cells and retroviral vector producer cell lines was performed to provide a local source of interleukin-2 (IL-2) or IFN-gamma within the tumor and coinitiate an antitumor immune response. We demonstrated that local intratumoral production of IL-2 and IFN-gamma generates a cell-mediated antitumor response in vivo. This response was manifest as a diffuse infiltration of monocytes/macrophages, CD4+ and CD8+ T cells, and activation of microglial OX42+ cells in intracerebral RG2 tumors. The cell-mediated antitumor immune response resulted in the early suppression of intracranial and subcutaneous tumor growth, but the effect was not sustained and there were no tumor regressions. The absence of increased survival of animals with intracranial tumors is explained in part by the severe central nervous system toxicity caused by local production of IL-2 and IFN-gamma. Central nervous system toxicity induced blood-brain barrier disruption, vasogenic brain edema, and dislocation of the brain midline structures, as observed by dynamic magnetic resonance imaging and direct measurements of tissue water content. The clinical application of IL-2 and IFN-gamma gene transfer therapy for intracerebral tumors must consider the potential for severe vasogenic brain edema associated with intracerebral production of these cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号