首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
设计了一种输电线路除冰机器人的机械结构, 分析了该机构的作业空间问题. 在计算过程中, 引入Monte Carlo方法得到了机器人操作臂的工作空间. 采用该方法可避免对机器人运动方程的求逆解计算, 极大地简化了计算过程. 分析并指出传统的机器人工作空间边界提取方法精度有限, 且存在理论上的缺陷; 提出了一种新的基于局部点象限分布的边界点提取方法, 文中给出的算例表明, 该方法不仅精度高, 并且非常适合于处理机器人工作空间边界问题.  相似文献   

2.
This paper focuses on multiplayer cooperative interaction in a shared haptic environment based on a local area network. Decoupled motion control, which allows one user to manipulate a haptic interface to control only one‐dimensional movement of an avatar, is presented as a new type haptic‐based cooperation among multiple users. Users respectively move an avatar along one coordinate axis so that the motion of the avatar is the synthesis of movements along all axes. It is different from previous haptic cooperation where all users can apply forces on an avatar along any direction to move it, the motion of which completely depends on the resultant force. A novel concept of movement feedback is put forward where one user can sense other users’ hand motions through his or her own haptic interface. The concept can also be explained wherein one person who is required to move a virtual object along only one axis can also feel the motions of the virtual object along other axes. Movement feedback, which is a feeling of motion, differs from force feedback, such as gravity, collision force and resistance. A spring‐damper force model is proposed for the computation of motion feedback to implement movement transmission among users through haptic devices. Experimental results validate that movement feedback is beneficial for performance enhancement of such kind of haptic‐based cooperation, and the effect of movement feedback in performance improvement is also evaluated by all subjects.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Stand-alone virtual environments (VEs) using haptic devices have proved useful for assembly/disassembly simulation of mechanical components. Nowadays, collaborative haptic virtual environments (CHVEs) are also emerging. A new peer-to-peer collaborative haptic assembly simulator (CHAS) has been developed whereby two users can simultaneously carry out assembly tasks using haptic devices. Two major challenges have been addressed: virtual scene synchronization (consistency) and the provision of a reliable and effective haptic feedback. A consistency-maintenance scheme has been designed to solve the challenge of achieving consistency. Results show that consistency is guaranteed. Furthermore, a force-smoothing algorithm has been developed which is shown to improve the quality of force feedback under adverse network conditions. A range of laboratory experiments and several real trials between Labein (Spain) and Queen’s University Belfast (Northern Ireland) have verified that CHAS can provide an adequate haptic interaction when both users perform remote assemblies (assembly of one user’s object with an object grasped by the other user). Moreover, when collisions between grasped objects occur (dependent collisions), the haptic feedback usually provides satisfactory haptic perception. Based on a qualitative study, it is shown that the haptic feedback obtained during remote assemblies with dependent collisions can continue to improve the sense of co-presence between users with regard to only visual feedback.  相似文献   

4.
A numerical multi-level optimization methodology is proposed for determining dextrous workspaces of 3-degree-of-freedom (3-dof) planar parallel manipulators, in which it is required that at any point within the workspace, the manipulator is able to assume any orientation in a specified range. The method starts by finding a single initial point on the boundary of the dextrous workspace. This first stage requires the successive solution of three separate optimization sub-problems, where the evaluation of the objective function for the second problem and the constraint functions in the third problem are determined by the solution of appropriate optimization problems at a lower level. Once the boundary point is identified, further successive points along the dextrous workspace boundary are traced by the application of the so-called chord method. In the latter procedure, the determination of each successive boundary point is also obtained via a constrained optimization problem, where the constraint functions are again evaluated via the solution of an optimization problem at a lower level. The proposed method is illustrated by its successful application to three different manipulator design geometries, and for various ranges of dexterity. An abbreviated version of this paper was presented at the 5th ASMO UK/ISSMO conference on Engineering Design Optimization, Stratford upon Avon, UK, July 12–13, 2004.  相似文献   

5.
机器人灵活工作空间的边界分析   总被引:4,自引:0,他引:4  
黄宇中  何奇伟 《机器人》1991,13(2):18-24
机器人灵活工作空间的分析是机器人运动学至今没有解决的一个问题.由于机器人在灵活工作空间中工作不会受到本身机构对它的限制.所以,机器人灵活工作空间的大小对于提高机器人的操作性能就显得格外重要.本文旨在解决机器人灵活工作空间边界的计算问题.首先.它分析了灵活工作空间边界的性质;其次,用一种新的方法——网络跟踪法确定了灵活工作空间在横截面内的边界;最后.提出了灵活工作空间端边界的求解方法.  相似文献   

6.
Various kinds of touch panel displays are becoming readily available for implementing futuristic human computer interaction (HCI) methods and are proven to be a useful infrastructure for inventing intuitive HCI environments. In spite of their popularity, there are some drawbacks. The most serious one is their hardness to operate especially for the weak in information technology such as elderly and blind users. A tactile feedback function has a potential ability for enabling them to make full use of the devices. We propose an approach for effectively designing user-friendly HCI environments based on the tactile feedback. We exemplify our approach through the design and development of a practical application, a haptic web browsing system. It allows even the weak users to intuitively explore various web pages without heavily depending on the visual information. While the system targets at supporting the weak, the touch interactions are quite useful means for general users to improve the stability and the degree of satisfaction in web browsing operations. The proposed system uses a touch panel haptic display for helping the users to operate with intuitive touch sensations.  相似文献   

7.
The accumulation of two independent, broadly applicable formulations for determining the boundary to manipulator workspaces, presented elsewhere, are compared in this paper. Insights gained from one method are used to explain behavior exhibited in the other. Results are also compared and validated. A numerical formulation based on continuation methods is used to map curves that are on the boundary of a manipulator workspace. Analytical criteria based on row rank deficiency criteria of the manipulator's analytical Jacobian are used to map a family of one-dimensional solution curves on the boundary. The other formulation, based on a similar rank-deficiency criteria, yields analytic boundaries parametrized in terms of surface patches on the boundary. Results concerning the applicability of the numerical method to open- and closed-loop systems are compared with those limited to the open-loop for the analytical method. Conclusions regarding the behavior of the manipulator on geometric entities characterized by singular curves, higher-order bifurcation points, and surfaces inside the workspace are drawn. Applicability of both methods and their limitations are also addressed.  相似文献   

8.
《Advanced Robotics》2013,27(3):275-291
In this paper, a visual and haptic human–machine interface is proposed for teleoperated nano-scale object interaction and manipulation. Design specifications for a bilateral scaled tele-operation system with slave and master robots, sensors, actuators and control are discussed. The Phantom? haptic device is utilized as the master manipulator, and a piezoresistive atomic force microscope probe is selected as the slave manipulator and as topography and force sensors. Using the teleoperation control system, initial experiments are realized for interacting with nano-scale surfaces. It is shown that fine structures can be felt on the operator's finger successfully, and improved nano-scale interaction and manipulation using visual and haptic feedback can be achieved.  相似文献   

9.
The combined effect of haptic and auditory feedback in shared interfaces on the cooperation between visually impaired and sighted persons is under-investigated. A central challenge for cooperating group members lies in obtaining a common understanding of the elements of the workspace and maintaining awareness of the other members' actions, as well as one's own, during the group work process. The aim of the experimental study presented here was to investigate if adding audio cues in a haptic and visual interface makes collaboration between a sighted and a blindfolded person more efficient. Results showed that task performance was significantly faster in the audio, haptic and visual feedback condition compared to the haptic and visual feedback condition. One special focus was also to study how participants utilize the auditory and haptic force feedback in order to obtain a common understanding of the workspace and to maintain an awareness of the group members' actions. Results from a qualitative analysis showed that the auditory and haptic feedback was used in a number of important ways to support the group members' action awareness and in the participants' grounding process.  相似文献   

10.

This study examined the interaction effects between haptic force feedback and users’ sensation seeking tendency (i.e. need for sensations) on users’ feelings of presence (i.e. the state in which users experience virtual objects and virtual environments as if they were actual) in robotic haptic interfaces. Users with low sensation seeking tendency felt stronger physical presence and spatial presence in response to force feedback haptic stimuli (versus no force feedback), whereas users with high sensation seeking tendency did not show any difference between the two conditions, thus confirming the moderating role of the users’ sensation seeking tendency in the robotic haptic interface. Theoretical implications for human–computer interaction (HCI) research and managerial implications for the interactive media market are discussed.  相似文献   

11.
A new method to on-line collision-avoidance of the links of redundant robots with obstacles is presented. The method allows the use of redundant degrees of freedom such that a manipulator can avoid obstacles while tracking the desired end-effector trajectory. It is supposed that the obstacles in the workspace of the manipulator are presented by convex polygons. The recognition of collisions of the links of the manipulator with obstacles results on-line through a nonsensory method. For every link of the redundant manipulator and every obstacle a boundary ellipse is defined in workspace such that there is no collision if the robot joints are outside these ellipses. In case a collision is imminent, the collision-avoidance algorithm compute the self-motion movements necessary to avoid the collision. The method is based on coordinate transformation and inverse kinematics and leads to the favorable use of the abilities of redundant robots to avoid the collisions with obstacles while tracking the end-effector trajectory. This method has the advantage that the configuration of the manipulator after collision-avoidance can be influenced by further requirements such as avoidance of singularities, joint limits, etc. The effectiveness of the proposed method is discussed by theoretical considerations and illustrated by simulation of the motion of three-and four-link planar manipulators between obstacles.  相似文献   

12.
This study presents a 3D virtual reality (VR) keyboard system with realistic haptic feedback. The system uses two five-fingered data gloves to track finger positions and postures, uses micro-speakers to create simulated vibrations, and uses a head-mounted display (HMD) for 3D display. When users press a virtual key in the VR environment, the system can provide realistic simulated key click haptic feedback to users. The results of this study show that the advantages of the haptic VR keyboard are that users can use it when wearing HMDs (users do not need to remove HMDs to use the VR keyboard), the haptic VR keyboard can pop-up display at any location in the VR environments (users do not need to go to a specific location to use an actual physical keyboard), and the haptic VR keyboard can be used to provide realistic key click haptic feedback (which other studies have shown enhances user performance). The results also show that the haptic VR keyboard system can be used to create complex vibrations that simulate measured vibrations from a real keyboard and enhance keyboard interaction in a fully immersive VR environment.  相似文献   

13.
研究了Stewart并联机器人的人机交互安全性问题.首先建立机器人的静力学方程,提取关节力敏感度和关节力敏感方向指标,度量关节力对操作力的感知敏感性.采用解析法和数值法结合的方法求算关节全局力敏感度.接着分析关节力敏感度在笛卡儿工作空间和位姿工作空间中的分布,以及构型参数对关节全局和局部力敏感度的影响.然后通过限制工作空间和调节末端执行器在工作过程中的位姿,在设计阶段合理选取构型参数,改善关节力敏感度的方法提高人机交互安全性.最后通过实验测试证明了,关节力敏感度能有效度量关节对交互力的敏感性,末端执行器的位置和姿态能直接改变关节力敏感度.  相似文献   

14.
The simulation of organ–organ interaction is indispensable for practical and advanced medical VR simulator such as open surgery and indirect palpation. This paper describes a method to represent real-time interaction between elastic objects for accurate force feedback in medical VR simulation. The proposed model defines boundary deformation of colliding elements based on temporary surface forces calculated by temporary deformation. The model produces accurate deformation and force feedback considering collisions of objects as well as prevents unrealistic overlap of objects. A prototype simulator of rectal palpation is constructed on general desktop PC with a haptic device, PHANToM. The system allows users to feel different stiffness of a rear elastic object located behind another elastic object. The results of experiments confirmed the method expresses organ–organ interaction in real-time and produces realistic and perceivable force feedback.  相似文献   

15.
增强现实技术是近年来人机交互领域的研究热点。在增强现实环境下加入触觉感知,可使用户在真实场景中看到并感知到虚拟对象。为了实现增强现实环境下与虚拟对象之间更加自然的交互,提出一种视触觉融合的三维注册方法。基于图像视觉技术获得三维注册矩阵;借助空间转换关系求解出触觉空间与图像空间的转换关系;结合两者与摄像头空间的关系实现视触觉融合的增强现实交互场景。为验证该方法的有效性,设计了一个基于视触觉增强现实的组装机器人项目。用户可触摸并移动真实环境中的机器人零件,还能在触摸时感受到反馈力,使交互更具真实感。  相似文献   

16.
《Advanced Robotics》2013,27(2-3):261-278
This paper addresses workspace determination of general 6-d.o.f. cable-driven parallel manipulators with more than seven cables. The workspace under study is called force-closure workspace, which is defined as the set of end-effector poses satisfying the force-closure condition. Having force-closure in a specific end-effector pose means that any external wrench applied to the end-effector can be balanced through a set of non-negative cable forces under any motion condition of the end-effector. In other words, the inverse dynamics problem of the manipulator always has a feasible solution at any pose in the force-closure workspace. The workspace can be determined by the Jacobian matrix and, thus, it is consistent with the usual definition of workspace in the robotics literature. A systematic method of determining whether or not a given end-effector pose is in the workspace is proposed. Based on this method, the shape, boundary, dimensions and volume of the workspace of a 6-d.o.f., eight-cable manipulator are discussed.  相似文献   

17.
Large displays have become ubiquitous in our everyday lives, but these displays are designed for sighted people.This paper addresses the need for visually impaired people to access targets on large wall-mounted displays. We developed an assistive interface which exploits mid-air gesture input and haptic feedback, and examined its potential for pointing and steering tasks in human computer interaction(HCI). In two experiments, blind and blindfolded users performed target acquisition tasks using mid-air gestures and two different kinds of feedback(i.e., haptic feedback and audio feedback). Our results show that participants perform faster in Fitts' law pointing tasks using the haptic feedback interface rather than the audio feedback interface. Furthermore, a regression analysis between movement time(MT) and the index of difficulty(ID)demonstrates that the Fitts' law model and the steering law model are both effective for the evaluation of assistive interfaces for the blind. Our work and findings will serve as an initial step to assist visually impaired people to easily access required information on large public displays using haptic interfaces.  相似文献   

18.
Haptic technologies and applications have received enormous attention in the last decade. The incorporation of haptic modality into multimedia applications adds excitement and enjoyment to an application. It also adds a more natural feel to multimedia applications, that otherwise would be limited to vision and audition, by engaging as well the user’s sense of touch, giving a more intrinsic feel essential for ambient intelligent applications. However, the improvement of an application’s Quality of Experience (QoE) by the addition of haptic feedback is still not completely understood. The research presented in this paper focuses on the effect of haptic feedback and what it potentially adds to the experience of the user as opposed to the traditional visual and auditory feedback. In essence, it investigates certain issues regarding stylus-based haptic education applications and haptic-enhanced entertainment videos. To this end, we used two haptic applications: the haptic handwriting learning tool to experiment with force feedback haptic interaction and the tactile YouTube application for tactile haptic feedback. In both applications, our analysis shows that the addition of haptic feedback will increase the QoE in the absence of fatigue or discomfort for this category of applications. This implies that the incorporation of haptic modality (both force feedback as well as tactile feedback) has positively contributed to the overall QoE for the users.  相似文献   

19.
并联机器人工作空间的研究   总被引:17,自引:2,他引:15  
吴生富  王洪波 《机器人》1991,13(3):33-39
本文对并联机器人的工作空间进行了研究.算法上采用输入转化的方法.使优化过程大为简化.在此基础上.对并联机器人工作空间的各截面进行了分析.并详细讨论了结构尺寸与工作空间的关系.得出扩大工作空间的几种途径.这对设计和应用并联机器人都有实际意义.  相似文献   

20.
王杰科  李琳  张海龙  郑利平 《计算机应用》2022,42(11):3544-3550
针对虚拟现实(VR)大空间下为重定向行走的用户提供被动触觉时存在的虚实交互目标无法一一对应的问题,提出了一种用两个物理代理作为触觉代理为多个虚拟目标提供触觉反馈的方法,以在基于人工势场(APF)的重定向行走过程中,交替地满足用户被动触觉的需求。针对重定向行走算法本身以及标定不精确等原因造成的虚实不对齐的问题,对虚拟目标的位置及朝向进行设计并且在交互阶段引入触觉重定向。仿真实验表明对虚拟目标位置和朝向的设计可以大幅降低对齐误差;而用户实验结果证明触觉重定向的引入进一步提升了交互准确性,且能为用户带来更丰富、更具沉浸感的体验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号