首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mn4+, La3+ and Ho3+ doped MgAl2Si2O8-based phosphors were first synthesized by solid state reaction. They were characterized by thermogravimetry (TG), differential thermal analysis (DTA), X-ray powder diffraction (XRD), photoluminescence (PL) and scanning electron microscopy (SEM). The phosphors were obtained at about 1300 °C. They showed broad red and fuchsia-pink emission bands in the range of 610-715 nm and had a different maximum intensity when activated by UV illumination. Such a fuchsia-pink emission can be attributed to the intrinsic d-d transitions of Mn4+.  相似文献   

2.
Nano-particles of homogeneous solid solution between TiO2 and Fe2O3 (up to 10 mol%) have been prepared by mechanochemical milling of TiO2 and yellow Fe2O3/red Fe2O3/precipitated Fe (OH)3 using a planetary ball mill. Such novel solid solution cannot be prepared by conventional co-precipitation technique. A preliminary investigation of photocatalytic activity of mixed oxide (TiO2/Fe2O3) on photo-oxidation of different organic dyes like Rhodamine B (RB), Methyl orange (MO), Thymol blue (TB) and Bromocresol green (BG) under visible light (300-W Xe lamp; λ > 420 nm) showed that TiO2 having 5 mol% of Fe2O3 (YFT1) is 3-5 times higher photoactive than that of P25 TiO2. The XRD result did not show the peaks assigned to the Fe components (for example Fe2O3, Fe3O4, FeO3, and Fe metal) on the external surface of the anatase structure in the Fe2O3/TiO2 attained through mechanochemical treatment. This meant that Fe components were well incorporated into the TiO2 anatase structure. The average crystallite size and particle size of YFT1 were found to be 12 nm and 30 ± 5 nm respectively measured from XRD and TEM conforming to nanodimensions. Together with the Fe component, they absorbed wavelength of above 387 nm. The band slightly shifted to the right without tail broadness, which was the UV absorption of Fe oxide in the Fe2O3/TiO2 particle attained through mechanochemical method. This meant that Fe components were well inserted into the framework of the TiO2 anatase structure. EPR and magnetic susceptibility show that Fe3+ is in low spin state corresponding to μB = 1.8 BM. The temperature variation of μB shows that Fe3+ is well separated from each other and does not have any antiferromagnetic or ferromagnetic interaction. The evidence of Fe3+ in TiO2/Fe2O3 alloy is also proved by a new method that is redox titration which is again support by the XPS spectrum.  相似文献   

3.
Three-dimensional flowerlike YBO3:Tb3+ phosphors have been successfully prepared by an efficient surfactant-free hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDS) spectrometry, selected area electron diffraction (SAED), photoluminescence (PL) spectra were used to characterize the samples. The as-obtained samples present flowerlike agglomerates composed of nanoflakes with thickness of 20 nm and high crystallinity in spite of the moderate reaction temperature of 180 °C. The reaction mechanism has been considered as a dissolution/precipitation mechanism; the self-assembly evolution process has been proposed on homocentric layer-by-layer growth style. The different luminescent intensity with different molar ratio of Y-Tb [Y:Tb = 8:2; 7:3; 6:4; 5:5; 4:6], YBO3:Tb3+ phosphors exhibit different light (white, red, green) under ultraviolet excitation, which might find potential applications in the fields such as light display systems and optoelectronic devices.  相似文献   

4.
Tm3+/Er3+/Yb3+ triply doped Y2O3 transparent ceramics were fabricated by solid state reaction and characterized from the point of view of white light upconversion luminescence. All the samples exhibited high transparency not only in near-infrared band but also in visible region. Strong red (Er3+: 4F9/2 → 4I15/2), green (Er3+: 2H11/2, 4S3/2 → 4I15/2) and blue (Tm3+: 1G4 → 3H6) upconversion emissions have been observed under 980 nm excitation at room temperature. By varying the concentration of Er3+ ion, various colors of upconversion luminescence (pure blue, bluish green, pure green and yellowish green), including white light with CIE-X = 0.295 and CIE-Y = 0.312, can be easily achieved.  相似文献   

5.
The upconversion (UC) luminescence in sol-gel synthesized Li+, Zn2+, or Li+-Zn2+ codoped Y2O3:Er3+ nanocrystals were investigated under the excitation of a 970 nm diode laser. Compared to undoped Y2O3:Er3+ samples, proper doping of Li+-Zn2+ leads to an drastic increase of the UC luminescence centered at 560 nm by a factor of 28. The UC luminescence enhancement is a result of the increased lifetime of the intermediate state 4I11/2 (Er). The intensity ratio of the green over red emissions (green/red) is also affected by the codoping of Zn2+, Li+ and Li+-Zn2+ ions. Our results demonstrated that the Li+-Zn2+ codoping in Y2O3:Er3+ phosphors produced remarkable enhancement of the UC luminescence and green/red ratio, making this nanocrystal a promising candidate for photonic and biological applications.  相似文献   

6.
Monodispersed spherical Y2O3:Yb, Ho upconversion luminescence (UCL) particles with sizes of 40-200 nm are prepared using a homogeneous precipitation method. It is found that aging time, varying between 90 and 10 min, has a profound influence on the precursor size, which systematically decreases from 230 nm to 50 nm. The precursor shows poor stability when aging time is 10 min, and the stability of precursor can be improved by increasing the urea concentration. The UCL spectra of Y2O3:Yb, Ho with different particle sizes are investigated. The results indicate that the integrated emission intensity ratio of green to red (Rgreen/red) exhibits a gradual decrease from 2.7 to 0.45 when the particle size decreases from 200 nm to 40 nm, and the possible reasons are evaluated.  相似文献   

7.
Nanoparticles of Eu3+ doped Mg2SiO4 are prepared using low temperature solution combustion technique with metal nitrate as precursor and urea as fuel. The synthesized samples are calcined at 800 °C for 3 h. The Powder X-ray diffraction (PXRD) patterns of the sample reveled orthorhombic structure with α-phase. The crystallite size using Scherer's formula is found to be in the range 50-60 nm. The effect of Eu3+ on the luminescence characteristics of Mg2SiO4 is studied and the results are presented here. These phosphors exhibit bright red color upon excitation by 256 nm light and showed the characteristic emission of the Eu3+ ions. The electronic transition corresponding to 5D0 → 7F2 of Eu3+ ions (612 nm) is stronger than the magnetic dipole transition corresponding to 5D0 → 7F1 of Eu3+ ions (590 nm). Thermoluminescence (TL) characteristics of γ-rayed Mg2SiO4:Eu3+ phosphors are studied. Two prominent and well-resolved TL glows with peaks at 202 °C and 345 °C besides a shoulder with peak at ∼240 °C are observed. The trapping parameters-activation energy (E), order of kinetics (b) and frequency factor (s) are calculated using glow curve shape method and the results obtained are discussed.  相似文献   

8.
Color-tunable phosphors BaLa2−xEuxWO7 were synthesized via a solid-state reaction. The absorption, excitation, emission and decay curves were obtained to study the luminescence properties. The experimental results indicate that BaLa2−xEuxWO7 phosphors have two regions in the excitation spectra: one is assigned to the charge-transfer state (CTS) band at about 338 nm, and the other is assigned to the intra-4f transitions at 360-600 nm. The emission spectra of BaLa2−xEuxWO7 phosphors excited at 395 nm exhibit a series of sharp peaks, which are attributed to the 5D0 → 7FJ (J = 0, 1, 2, 3, 4) transitions. Luminescence from higher excited states, such as 5D1, 5D2, and 5D3, were also observed at low Eu3+ concentration. The optimal emission intensity of 5D0 → 7F2 red emission is at x = 0.4 (BaLa1.6Eu0.4WO7). The chromaticity coordinates of BaLa2−xEuxWO7 phosphors vary with Eu3+ content from white, orange-red, to red, making it a candidate for a white-light-emitting phosphor in UV-LEDs.  相似文献   

9.
YVO4:Bi3+ phosphors have been prepared by a convenient high-temperature solid-state method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) technologies are used to study the luminescence properties of YVO4:Bi3+ phosphors. The emission and excitation spectra of Bi3+ in the YVO4 lattice have been investigated at room temperature. The excitation band peaks at 330 nm in a region among 250-400 nm, and the emission spectrum exhibits an intense yellowish-white broad emission centered at about 543 nm covering from 400 nm to 800 nm. The full width at half maximum (FWHM) is about 144 nm. The color coordinates of the as-synthesized YVO4:Bi3+ phosphors are in a range of x = 0.358-0.374, y = 0.482-0.496. The dependence of the luminescence intensity on Bi3+ concentrations and heat treatment condition has also been discussed. In addition, we found that a little amount of flux NH4Cl could enhance the Bi3+ luminescence intensity.  相似文献   

10.
Dysprosium-activated Sr3RE2(BO3)4 (RE = Y, La, Gd) phosphors were synthesized by a high temperature solid-state reaction method. The phase uniformity of the phosphors was characterized by X-ray powder diffraction (XRD) and the luminescence characteristics were investigated. The excitation spectra at 575 nm emission show strong spectral bands in the region of 300-500 nm. The emission spectra of the phosphors with 365 nm excitation show three bands centered at 484 nm, 575 nm and 680 nm, which originate from the transitions of 4F9/2 → 6H15/2, 4F9/2 → 6H13/2 and 4F9/2 → 6H11/2 of Dy3+, respectively. The effect of Dy3+ concentration on the emission intensity of the phosphors was investigated. The fluorescence decay curves for 4F9/2 → 6H13/2 excited at 365 nm and monitored at λem of 575 nm were measured. The decay times decreased slowly with increasing Dy3+ doping concentration due to a trap capturing to resonance fluorescence transfer of the activated ions and due to the exchange interactions between activated ion pairs. In order to determine the type of interaction between activated ions, the concentration dependence curves (lg(I/x) versus lg x) of Sr3RE2(BO3)4:Dy3+ (RE = Y, La, Gd) were plotted. The concentration quenching mechanism of the 4F9/2 → 6H13/2 (575 nm) transition of Dy3+ is the d-d interaction. All results indicate these phosphors are promising white-color luminescent materials.  相似文献   

11.
KSrPO4:Tb3+ phosphors were prepared by a solid-state method and their photoluminescence properties were investigated under vacuum ultraviolet excitation. In the excitation spectrum monitoring at 544 nm, the band in the region of 120-162 nm can be attributed to be the overlap of host absorption and charge transfer transition of O2− → Tb3+, and the band ranging from 162 to 300 nm was assigned to the f-d transition of Tb3+. The photoluminescence spectrum shows that the phosphors exhibited a strong green emission around 544 nm corresponding to the 5D4  7F5 transition of Tb3+ under the excitation of 147 nm. Optimal emission intensity was obtained when x = 7% in KSr1-xPO4:xTb3+ and the luminescent chromaticity coordinates were calculated to be (x = 0.317, y = 0.522) for KSr0.93PO4:7%Tb3+.  相似文献   

12.
Blue and green light emissive nanocrystalline Ca2Gd8Si6O26 (CGS):Tm3+ and CGS:Er3+ phosphors with high color purity were prepared by solvothermal reaction method. The structural and morphological properties of these phosphors were evaluated by the powder X-ray diffraction (XRD) and scanning electron microscopy, respectively. From the XRD results, Tm3+:CGS and Er3+:CGS phosphors had the characteristic peaks of oxyapatite in the hexagonal lattice structure. The visible luminescence properties of phosphors were obtained by ultraviolet (UV) or near-UV light and low voltage electron beam (0.5-5 kV) excitation. The photoluminescence and cathodoluminescence properties were investigated by changing the variation of Tm3+ or Er3+ concentrations and the acceleration voltage, respectively. The CGS:Tm3+ phosphors exhibited the blue emission due to 1D23F4 transition, while the CGS:Er3+ phosphors showed the green emission due to 4S3/24I15/2 transition. The color purity and chromaticity coordinates of the fabricated phosphors are comparable to or better than those of standard phosphors for lighting or imaging devices.  相似文献   

13.
A novel class of orange-red phosphors namely CaLa2ZnO5 (CLZ) doped with Eu3+ ions were prepared by adopting citrate based sol-gel method. Those were thoroughly characterized by means of XRD, SEM, Tg-DTA, photoluminescent (PL) spectral profiles. PL studies reveal that its emission intensity strongly depends on sintering temperature as well as the dopant ion (Eu3+) concentration. Eu3+ ion doped CaLa2ZnO5 phosphor has a strong excitation at 468 nm, which correspond to the popular emission line from a GaN based blue light-emitting diode (LED) chip. The influence of the preparation method on the luminescence property was studied by comparing the emission performance of phosphors prepared by sol-gel and solid-state reaction methods along with a commercial red phosphor Y2O2S:Eu3+. Thus, the intense red emission (5D0 → 7F2) of the Eu3+ doped CLZ phosphors under blue excitation suggests them to be a potential candidate for the production of white light by blue LEDs.  相似文献   

14.
Co3O4/graphene nanocomposite material was prepared by an in situ solution-based method under reflux conditions. In this reaction progress, Co2+ salts were converted to Co3O4 nanoparticles which were simultaneously inserted into the graphene layers, upon the reduction of graphite oxide to graphene. The prepared material consists of uniform Co3O4 nanoparticles (15-25 nm), which are well dispersed on the surfaces of graphene nanosheets. This has been confirmed through observations by field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. The prepared composite material exhibits an initial reversible lithium storage capacity of 722 mAh g−1 in lithium-ion cells and a specific supercapacitance of 478 F g−1 in 2 M KOH electrolyte for supercapacitors, which were higher than that of the previously reported pure graphene nanosheets and Co3O4 nanoparticles. Co3O4/graphene nanocomposite material demonstrated an excellent electrochemical performance as an anode material for reversible lithium storage in lithium ion cells and as an electrode material in supercapacitors.  相似文献   

15.
A low-cost ZnAl2O4:Mn2+ green nanophosphor for field emission display (FED) was successfully synthesized by the coprecipitation method and a two-step firing, firstly calcining at 1200 °C for 2 h in air and then annealing at 900 °C for 3 h in flowing NH3 gas. The effects of the preparation process and the Mn2+ concentration on optical properties of ZnAl2O4:Mn2+ were investigated. The phase composition, particle morphology, photoluminescence (PL) spectra of the ZnAl2O4:Mn2+ phosphor as well as low-voltage field emission properties of the FED device prepared by using the synthesized ZnAl2O4:Mn2+ phosphor were examined. Similar to ZnGa2O4:Mn2+, Mn2+-doped ZnAl2O4 showed two green emission bands centered at 508 and 517 nm, respectively, which originate from 4T1(4G)→6A1(6S) transitions of Mn2+ on Td and Oh sites. The PL intensity reached the maximum at 0.5 at.% Mn2+. Under the low-voltage excitation, the FED device exhibited bright green emission, high voltage brightness saturation, and high color purity.  相似文献   

16.
In this work, TiO2 nanorods were prepared by a hydrothermal process and then Bi2MoO6 nanoparticles were deposited onto the TiO2 nanorods by a solvothermal process. The nanostructured Bi2MoO6/TiO2 composites were extensively characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of the Bi2MoO6/TiO2 composites was evaluated by degradation of methylene blue. The Bi2MoO6/TiO2 composites exhibit higher catalytic activity than pure Bi2MoO6 and TiO2 for degradation of methylene blue under visible light irradiation (λ > 420 nm). Further investigation revealed that the ratio of Bi2MoO6 to TiO2 in the composites greatly influenced their photocatalytic activity. The experimental results indicated that the composite with Bi2MoO6:TiO2 = 1:3 exhibited the highest photocatalytic activity. The enhancement mechanism of the composite catalysts was also discussed.  相似文献   

17.
The CaSc2O4:Ce3+ nano-phosphors were successfully prepared by a single-step combustion method at an ignition temperature as low as 200 °C in a closed autoclave using glycine as a fuel and PEG4000 as a dispersant. The samples were characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscope (TEM). The results revealed that CaSc2O4:Ce3+ nano-phosphors can be conveniently prepared at an ignition temperature as low as 200 °C, which was much lower than that in the ordinary combustion methods. The optimized ignition temperature was 220 °C. The CaSc2O4:Ce3+ nano-phosphors give a uniform particle size in the range of 15-20 nm. The low ignition temperature and the addition of PEG4000 dispersant play important roles in the formation of small sized nanoparticles. The as-prepared nano-phosphors were incompact aggregates, but highly dispersed nano-phosphors can be obtained after further ultrasonic treatment. The CaSc2O4:Ce3+ nano-phosphors give satisfactory luminescence characteristic benefiting from the closed circumstance, in which cerium atoms can be isolated from the oxidizing atmosphere and non-fluorescent Ce4+ ions can be ruled out. The present highly dispersed CaSc2O4:Ce3+ nano-phosphors with efficient fluorescence are promising in the field of biological labeling, and the present low temperature combustion method is facile and convenient and can be applied as a universal process for preparing non-aggregate oxide nano-phosphors, especially those being sensitive to air at high temperature.  相似文献   

18.
The phosphors BaMg2(PO4)2 doped with Eu2+ and Mn2+ solely or doubly were prepared by solid state reaction, and their luminescent properties were also investigated. Under the excitation of 322 nm, it has been observed a broad blue emission band centered at 417 nm and a red emission band centered at about 665 nm, resulting from Eu2+ and Mn2+, respectively. Resonance-type energy transfers from Eu2+ to Mn2+ were discovered by directly overlapping the emission spectra of Eu2+ and the excitation spectra of Mn2+. According to the changes of relative intensities of Eu2+ and Mn2+ emission, efficiencies of energy transfer were calculated. Based on the principle of energy transfer, the relative intensities of blue and red emission could be tuned by adjusting the contents of Eu2+ and Mn2+.  相似文献   

19.
Nd:Lu3Al5O12 (Nd:LuAG) nano-crystalline was synthesized by co-precipitation method. Its phase transformation, structure, absorption and photoluminescence properties were studied. The Nd:LuAG polycrystalline phase is formed above 900 °C and its particle sizes are in the range of 18-36 nm. The structure of Nd:LuAG was refined by Rietveld method. The lattice parameters and the distortion of Lu3+-O2− polyhedron in Nd:LuAG are larger than that of in pure LuAG. Because the distortion of Lu3+-O2− polyhedron is larger than that of Y3+-O2− polyhedron in YAG and the distance of Lu3+-O2− is smaller than that of Y3+-O2− in YAG, Nd3+ in LuAG experiences a stronger crystal field effect, which is proved by the crystal field strength and the chemical environment parameter. The absorption spectrum shows that Nd:LuAG has a broad absorption band at 808 nm with FWHM above 6 nm, which is favorable for improving laser efficiency. The fluorescence lifetime from 4F3/2 → 4I11/2 transition is 320 μs and longer than that of Nd:YAG. The longer lifetime is propitious to energy storage. The emission cross section at 1064 nm is 2.89 × 10−19 cm2, taking into account the Boltzmann distribution of the excited state. The emission cross section in Nd:LuAG is also larger than that of Nd:YAG, which is useful for laser operation. All results indicate that Nd:LuAG is a promising crystal material to apply in high energy lasers.  相似文献   

20.
The temperature dependence of competition between interlayer and interfacial couplings is observed at different temperatures in Co (3 nm)/Cr2O3 (t)/Fe (10 nm) trilayers with t = 3 nm, 6 nm, 15 nm and 25 nm, respectively. The interlayer coupling enhances and the interfacial coupling weakens with increasing temperature. The balanceable temperature between interfacial and interlayer couplings shifts to low temperatures with increasing spacer thickness. Furthermore, the competition between interfacial and interlayer couplings greatly affects the magnetotransport properties of the trilayers. The negative magnetoresistance and the minimum resistance corresponding to balanceable temperature are found in trilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号