首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用化学还原法制备了PtRu/C催化剂,XRD的表征分析结果表明:Pt粒子呈面心立方结构,催化剂平均粒径为4nm。并使用循环伏安法研究了PtRu/C催化剂(担载量0.056mg/cm2,PtRu的质量分数为20%,Pt/Ru原子比为1∶1)的电氧化性能。研究结果显示制备的催化剂对甲醇有高的电催化氧化性能:起始电位为0.2V(vs.SCE),其峰值电流密度为23.52mA/cm2,比质量活性为419mA/mg。研究还发现利用本方法制备的PtRu/C催化剂对于甲醇有较强的抗CO中毒能力和较高的电催化活性。  相似文献   

2.
对商业Pt/C和PtRu/C催化剂进行真空加热处理,研究热处理对催化剂微观结构变化及甲醇氧化的影响.X射线衍射光谱法(XRO)和热重(TG)研究结果表明:低温(210℃以下)真空加热处理对Pt/C和PtRu/C催化剂活性金属组分的晶体结构和催化剂表面处于活性位置(Pt-C结合位置)的碳原子数没有较大影响.电化学测试结果表明:热处理后的商业Pt/C和PtRu/C催化剂对甲醇氧化活性均高于初始催化剂,而且180℃加热处理的Pt/C和PtRu/C催化剂对甲醇催化氧化性能最好,其电化学稳定性在热处理前后基本保持不变.  相似文献   

3.
高活性的PtRu/C抗CO催化剂   总被引:3,自引:0,他引:3  
采用共沉积还原法制备了高分散度的催化剂PtRu/C。对此催化剂进行的XRD晶相分析表明 ,PtRu/C中的双金属形成了合金 ,并具有较高的分散度。通过EMFC中单电池的伏安曲线和循环伏安法考察了自制PtRu/C催化剂的活性 ,并与Pt/C和Johnson Matthey公司的PtRu/C进行了比较。由循环伏安中氢的氧化脱附峰的面积和电池纯氢燃料的性能 ,得到催化剂对H2 的活性顺序是 :Pt/C >自制的PtRu/C >Johnson MattheyPtRu/C ,而对H2 / (5× 10 -5)CO燃料的活性顺序是 :自制的PtRu/C >Johnson MattheyPtRu/C >Pt/C。通过对循环伏安中CO氧化过程的研究认为 ,CO的氧化通过双功能机理 (Bifunctionalmechanism)进行 ,Ru的加入提高了催化剂对H2 O的活性 ,使PtRu表面容易形成吸附态的含氧物种 (OH ) ads,从而降低了催化剂氧化CO的电势。  相似文献   

4.
为了提高直接甲醇燃料电池阳极催化活性,通过浸渍法制备了PMo12修饰Pt/C电极,并采用粉末微电极技术比较研究了PMo12修饰Pt/C电极在硫酸溶液中的电化学性质及其对甲醇氧化反应的电催化性能。结果表明,甲醇在PMo12修饰Pt/C电极上的氧化速度能够明显提高。  相似文献   

5.
利用化学沉积法将壳聚糖(Chitosan)修饰于直接甲醇燃料电池(DMFC)阳极催化剂中,制得PtRu/CNT-CS催化剂,并考察了其对甲醇的电催化氧化性能。壳聚糖的修饰使甲醇氧化的电流密度由29.3 m A/cm~2增加到44.8 m A/cm~2,电荷转移电阻明显减小。  相似文献   

6.
罗宿星  伍远辉  勾华  石模远 《电源技术》2011,35(8):964-965,973
用滴涂法制备了杂多酸修饰多壁碳纳米管载铂催化剂( Pt/CNTs-HPA),研究了它在硫酸中的电化学行为以及对甲醇的电催化氧化.实验结果表明,与Pt/CNTs修饰电极相比,Pt/CNTs-HPA修饰电极对甲醇电催化氧化速率明显增加,且对甲醇的催化氧化是扩散控制的电化学反应过程,该修饰电极具有良好的稳定性.  相似文献   

7.
陈玲  王新东  郭敏 《电源技术》2006,30(6):439-442
以NdOx作为助催化剂,采用浸渍还原法合成了不同原子比例的PtRu-NdOx/C催化剂。首先研究了不同还原温度对PtRu/C催化剂的电催化性能的影响。X射线衍射光谱法(XRD)和循环伏安测试结果表明:当还原温度为90℃时,合成出的催化剂粒度最小,对甲醇电氧化的催化性能也最好。其次,通过能量散射X射线谱(EDX)、XRD、透射电子显微镜法(TEM)和循环伏安法、计时电流法等测试手段,研究了不同n(Pt)∶n(Ru)∶n(Nd)原子比例对PtRu-NdOx/C催化剂性能的影响。实验结果表明:n(Pt)∶n(Ru)∶n(Nd)原子比为3∶3∶1时,合成出的催化剂电催化性能较好;而且Pt与Ru以合金形式存在,而Nd的氧化物则以无定形态存在,催化剂粒子分布均匀,平均粒径在2nm左右。  相似文献   

8.
胶态Pt/C催化剂对甲醇的电催化氧化性能   总被引:3,自引:0,他引:3  
唐亚文  杨辉  李钢  邢巍  陆天虹 《电源技术》2003,27(Z1):157-159
研究了Pt金属载量为20%的碳载胶态Pt金属催化剂对甲醇的电催化氧化性能,并与E-TEK公司同类型催化剂进行了比较.X衍射光谱(XRD)和透射电镜(TEM)研究显示在胶态Pt/C催化剂中,Pt粒子的平均粒径为3.8 nm,并且具有良好的均一度.电化学研究显示尽管胶态Pt/C催化剂拥有相对较小的电化学活性面积,但对甲醇的电催化氧化性能却明显优于E-TEK公司的Pt/C催化剂,其原因应归结于利用有机溶胶法制得的胶态Pt/C催化剂拥有更合理的平均粒径.  相似文献   

9.
分别以鳞片石墨(fG)、膨胀石墨(eG)和超细石墨粉(sG)为原料,采用改进的Hummers法制备氧化石墨,采用简单的原位还原法在乙二醇中同时还原H_2PtCl_6和氧化石墨烯(GO)制备Pt/fGr、Pt/eGr和Pt/sGr催化剂。采用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)和透射电镜(TEM)对材料进行表征,并比较了催化剂对甲醇氧化的电催化性能。结果表明,所制备的氧化石墨烯均为透明、片状,其中sGO质量最优。Pt纳米粒子粒径为2~2.5nm,均匀分散在石墨烯表面和边缘。催化剂对甲醇氧化的电催化性能和稳定性大小顺序为Pt/sGrPt/eGrPt/fGr,其性能都高于Pt/C催化剂。  相似文献   

10.
采用微波多元醇法合成了Pt/C、Pt-M(Fe、Co、Ni)/C电催化剂,通过X-射线衍射仪(XRD)和透射电镜(TEM)测试手段对催化剂的微观结构、表面形貌等物理性能进行表征,并对其电化学性能进行了比较。测试结果表明:催化剂均高度分散在Vulcan XC-72碳载体上,Pt/C、Pt-Fe/C、Pt-Ni/C和Pt-Co/C电催化剂的平均粒径分别为:3.4、2.6、2.8、3.1 nm。在室温28℃下测得的电化学性能结果表明:合成催化剂在甲醇中的氧化活性高低顺序为:Pt-Fe/CPt-Co/CPt-Ni/CPt/C,催化剂电催化性的稳定性高低顺序为:Pt-Ni/CPt-Co/CPt-Fe/CPt/C,合成的Pt-M/C电催化剂催化性能均比Pt/C催化剂高,掺入合金Fe、Co和Ni后的Pt-M/C催化剂均具有较好的抗CO中毒的能力。  相似文献   

11.
杜娟  原鲜霞  余江虹  马紫峰 《电源技术》2007,31(11):873-876
寻找既具有高的甲醇电氧化催化活性、又具有强的抗CO中毒能力的阳极催化剂是当前DMFC研究工作者的迫切任务.在比较研究传统的液相浸渍还原法和微波合成技术对催化剂PtMo1/2/C微观形貌、晶体结构和甲醇电氧化催化活性影响的基础上,系统研究了Pt和Mo的原子配比对PtMox/C催化剂晶体结构、甲醇电氧化催化活性和抗CO中毒能力的影响.结果表明,微波法更有利于制得高结晶度、均匀分散、甲醇氧化催化活性更高的催化剂;微波法制得的催化剂PtMox/C中,Mo的加入虽然使催化剂的晶格参数有所改变,但PtMox/C仍表现为Pt的(fcc)晶型,其中PtMo1/2/C具有最好的甲醇氧化催化性能和抗CO中毒能力.  相似文献   

12.
PtCr/C-Nafion 膜氧电极的电催化活性   总被引:6,自引:2,他引:4  
氧还原电催化剂的研究对聚合物电解质膜燃料电池技术的发展具有极其重要的意义。实验表明某些碳载铂的二元合金可以改善聚合物电解质膜燃料电池中氧还原的电催化性能。本工作的目的是考察PtCr/C作为氧电极催化剂的活性。采用松木碳为载体和水合肼为还原剂,通过化学还原沉积法制得Pt/C和PtCr/C催化剂。通过涂层和热压得到催化剂-Nafion膜电极。用电流-电位极化和恒电流放电法研究了催化剂-Nafion膜电极的性能。与Pt/C-Nafion膜电极比较,PtCr/C-Nafion膜电极对氧的电化学还原显示出高的活性。热处理催化剂的活性比未热处理的高。XRD分析结果表明,热处理催化剂活性的提高看来主要是由晶格结构改变的结果引起的。  相似文献   

13.
制备了直接甲醇燃料电池双催化层阴极,双催化层由内催化层Pt黑和外催化层40%Pt/C构成。接触角测试、扫描电镜(SEM)以及能谱(EDX)分析结果表明,在双催化层阴极结构中形成了憎水性、孔结构和催化剂浓度梯度分布。循环伏安测试结果表明双催化层具有较多的电化学活性表面积。该双催化层阴极结构有利于氧气扩散和水的排出,提高了电池性能。  相似文献   

14.
DMFC中甲醇氧化催化剂的催化机理   总被引:3,自引:0,他引:3  
李兰兰  魏子栋  李莉 《电源技术》2004,28(5):324-327
直接甲醇燃料电池(DMFC)是电动汽车最为可行的电源。综述了作为甲醇氧化催化剂的铂及铂的多元体系;钙钛矿型氧化物的研究现状。概述了催化氧化反应机理;催化剂表面结构和性质以及电极电势对催化活性的影响。目前的催化剂是不令人满意的。基础研究将有助于我们避免用纯经验的方法来寻求更为理想的催化剂。  相似文献   

15.
张敏  潘牧 《电池工业》2011,16(5):311-316
对近年来改善Pt催化剂本征氧还原活性的研究进行了系统的总结,发现Pt基合金催化剂和Me@Pt核壳结构催化剂氧还原能力的增强均与Pt化学键的改变导致中间产物吸脱附能力的变化有关,但Pt基合金催化剂和在动态电位以及强酸条件下具有较低的物理结构稳定性和化学稳定性;同时,由于Pt催化剂氧还原能力具有高度的晶体结构依赖性,提高催...  相似文献   

16.
采用热分解方法,利用氯铂酸和三氯化钌为原材料在特定条件下制作了直接甲醇燃料电池(DMFC)阳极PtRu催化剂,这种催化剂被制作成薄膜型均匀附着在特制的圆形钛金属反射电极上,为PtRu/Ti电极.为了与该新型电极作比较性研究,同样采用了热分解方法利用氯铂酸为原材料使用同样的制作条件制作了Pt催化剂,这种催化剂也被制作成薄膜型均匀附着在特制的圆形钛金属反射电极上,为Pt/Ti电极.利用在线傅里叶变换红外(FTIR)光谱对Pt和PtRu催化剂上甲醇氧化的反应机理作了研究.结果表明该PtRu催化剂对甲醇氧化生成CO2起着显著的促进作用,并随反应温度的升高而加速.  相似文献   

17.
采用乙二醇还原法制备了Pt含量为5%(质量分数)的Pt/C和Pt/FePO4/C催化剂,并用透射电镜(TEM)表征催化剂的形貌.催化剂中Pt粒子在载体上高度分散,且粒径均匀.Pt/FePO4/C和Pt/c催化剂的平均粒径分别为1.2nm和0.9 nm.实验结果表明,Pt/FePO4/C催化剂具有较Pt/C更高的电化学活性比表面积和催化氧还原的活性.分别利用两种催化剂制备PEMFC阴极,Pt的担量均为0.08mg/cm2.以氧气为阴极反应气时,采用Pt/FePO4/C和Pt/C的PEMFC单电池的峰值功率密度分别为763mW/cm2和663mW/cm2;阴极催化剂质量比功率分别为9.54kW/g Pt和8.29kW/gPt;即作为PEMFC阴极催化剂,Pt/FePO4/C具有更高的催化活性.  相似文献   

18.
采用模板法制备了卟啉化合物Meso-5,10,15,20-四(N,N-二甲氨基苯基)卟啉铁(Ⅱ)(TDMNPPFe(Ⅱ)),用活性碳固载、活化制成催化剂.用TEM、XRD对催化剂的微观形貌进行了表征,结果表明,TDMNPPFe(Ⅱ)均匀分散在活性碳表面,当活化温度高于950℃时,催化剂表面开始出现金属原子簇结构的晶体.利用旋转圆盘电极表征了TDMNPPFe(Ⅱ)的催化氧还原活性,考察了活化温度、Fe(Ⅱ)载量对催化活性的影响.结果表明,最佳活化温度为600℃,最佳Fe(Ⅱ)载量为6%(质量分数).把600 ℃活化的6%载量的催化剂(Catmax)与Pt/C(ω=30%)作了比较,结果表明Catmax比Pt/C催化剂氧还原起始电位负约90 mV,但反应电子转移数相差不大.利用循环伏安法和线性伏安法测试了Catmax催化剂的耐甲醇性能,结果表明,甲醇的加入对催化剂的催化氧还原行为没有任何影响,表明TDMNPPFe(Ⅱ)具有良好的耐甲醇性能.  相似文献   

19.
Phenomena are presented whereby the performance of a dimethyl ether fuel cell (DDFC) at 80°C is much lower when a Pt‐Ru catalyst is used on the anode than when a Pt catalyst is used, in contrast to the higher performance achieved using a Pt‐Ru catalyst over a Pt catalyst in direct methanol fuel cells (DMFC). The DDFC performance achieved using a Pt‐Ru catalyst increases with temperature and exceeds that using a Pt catalyst at temperatures over 100 °C. After high‐temperature operation, the performance of DDFC using a Pt‐Ru catalyst at 80 °C is improved. By supplying sufficient steam before operation, the performance of DDFC using a Pt‐Ru catalyst at 80 °C is also found to improve. Before and during operation, more steam is needed for stable operation of the DDFC using a Pt‐Ru catalyst at 80 °C than using a Pt catalyst. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 150(3): 19–25, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20072  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号