首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Semiconducting n-CdIn2Se4 thin films have been deposited on to the amorphous and fluorine doped tin oxide (FTO) coated glass substrates using spray pyrolysis technique. The influence of solution concentration on to the photoelectrochemical, structural, morphological, compositional, thermal and electrical properties has been investigated. The PEC characterization shows that the short circuit current (Isc) and open circuit voltage (Voc) are at their optimum values (Isc = 1.04 mA and Voc = 409 mV) at the optimized precursor concentration (12.5 mM). The structural analysis shows the films are polycrystalline in nature having cubic crystal structure. The average crystallite size determined was in the range of 50-66 nm. Surface morphology and film composition have been analyzed using scanning electron microscopy and energy dispersive analysis by X-rays, respectively. The addition of solution concentration induces a decrease in the electrical resistivity of CdIn2Se4 films up to 12.5 mM solution concentration. The type of semiconductor was examined from thermoelectric power measurement.  相似文献   

2.
Bismuth selenide (Bi2Se3) thin films have been prepared onto clean glass substrates by the thermal evaporation technique. The deposited films were then immersed in silver nitrate solution for different periods of time, followed by annealing in Argon atmosphere at 473 K for 1 h, to obtain Ag/Bi2Se3 samples. The prepared films have been examined by X-ray and transmission electron microscopy for structural determination. The optical transmission and reflection spectra of the deposited films have been recorded within the wavelength range 400-2500 nm. The variation of the optical parameters of the prepared films, such as refractive index, n, and the optical band gap, Eg as a function of the immersion duration times has been determined. The refractive index dispersion in the transmission and low absorption region is adequately described by the well-known Sellmeier dispersion relation, whereby the values of the oscillator strength, oscillator position, the high-frequency dielectric constant, ε as well as the carrier concentration to the effective mass ratio, N/m* were calculated as a function of the immersion duration time.  相似文献   

3.
Preparation of highly conducting and transparent In-doped Cd2SnO4 thin film by spray pyrolysis method at a substrate temperature of 525 °C is reported. In-doping concentration is varied between 1 and 5 wt.%. The effect of In-doping on structural, optical and electrical properties was investigated using different techniques such as X-ray diffraction, atomic force microscopy, optical transmittance and Hall measurement. X-ray diffraction studies revealed that the films are polycrystalline with cubic crystal structure. The undoped and In-doped Cd2SnO4 films exhibit excellent optical transparency. The average optical transmittance is ∼87% in the visible range for 3 wt.% In-doping. Further In-doping widens the optical band gap from 2.98 ± 0.1 eV to 3.04 ± 0.1 eV. A minimum resistivity of 1.76 ± 0.2 × 10−3 Ω cm and maximum carrier concentration of 9.812 ± 0.4 × 1019 cm−3 have been achieved for 1 wt.% In-doping in Cd2SnO4 thin films.  相似文献   

4.
Yttria-doped zirconia (YDZ) nanopowders were synthesized via a solvothermal route using ethanol as solvent. Evolution of crystal phases for different amount of yttria-doped samples were studied by X-ray diffraction (XRD). Morphology and component of the as-synthesized cubic YDZ were characterized by scanning electron microscopy (SEM) and energy dispersion spectrum (EDS). Defects of the sample were detected using ultraviolet–vis (UV–vis) absorption spectrum and photoluminescence (PL) spectrum. The results indicated that cubic structured nanocrystals can be obtained through doping 4 mol% Y2O3 into ZrO2 lattice. The particles had sphere morphology with an average crystal size of 10 nm and agglomerated into bigger spheres with a diameter of about 120 nm. Mechanism of the agglomeration was also discussed. UV spectra showed two absorption peaks, red shift for both of the adsorption edges was observed. PL spectra with excitation wavelength of 260 and 420 nm revealed six fluorescence peaks which were regarded as various energy levels in the band gap and as the evidence of existence of oxygen vacancies in the as-synthesized sample.  相似文献   

5.
Bulk glasses of formal composition Ge28−xSe72Sbx with 0≤x≤28 were prepared by applying the quench technique. The optical transmission spectra—using a melt were measured in the range from 200 to 1200 nm for Ge28−xSe72Sbx films which are prepared by thermal evaporation technique. A simple, straightforward procedure suggested by Swanepoel, which is based on the use of interference fringes, has been applied to calculate the film thickness. On other hand the driving absorption coefficient (α), consequently the band tail width Ee and the optical band gap have been estimated. The real (ε′) and imaginary parts (ε″) of the dielectric constant have been determined and the optical band gap can also be calculated as a function of imaginary part (ε″). The dispersion parameters such as E0(single-oscillator energy), Ed (dispersive energy) and M−1, M−3 (moments) were discussed in terms of the single-oscillator Wemple–DiDomenico model.  相似文献   

6.
Both a binary amorphous system of composition As2Se3 and a ternary amorphous system of composition amorphous (As2Se3)0.99In0.01 with thickness in the range 150–250 nm have been prepared by thermal evaporation technique. Indium doping and thickness effects on the features of As2Se3 thin films have investigated. The optical transmission spectra of these films have been measured in the range 200–1200 nm where the absorption coefficient and the optical energy gap Eg are evaluated. The refractive index and surface roughness of the prepared films are found to be highly dependent on film thickness and indium doping, using Swanepoel method.The single oscillator energy (Eo) and the energy dispersion parameter (Ed) have been calculated and discussed in terms of the Wemple and DiDomenico model. The results reveal that, they are thickness dependent—both Eo and Ed being higher for the undoped samples than that for the doped films.  相似文献   

7.
Effect of precursor concentration on the properties of ITO thin films   总被引:1,自引:0,他引:1  
Tin-doped indium oxide (ITO) thin films have been prepared by the spray pyrolysis method using indium chloride as a precursor and stannic chloride as a dopant. The effect of a precursor concentration on the structural, morphological, electrical and optical properties of films has been studied. The concentration of InCl3 in the spraying solution is varied from 6.25 to 37.5 mM keeping doping percentage of tin fixed at its optimized value of 5 wt.%. Bare glass is used as a substrate and oxygen as the carrier and reaction gas. X-ray diffraction (XRD) patterns show that films are polycrystalline and their crystallinities are dependent on the precursor concentration. A surface morphology has been observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The typical ITO film has minimum resistivity value of 2.71 × 10−3 Ω cm, whose carrier concentration and mobility were 7.45 × 1019 cm−3 and 31 cm2/(V s), respectively. In addition, the best ITO film has optical transmittance of 94.4% and figure of merit 1.20 × 10−3 Ω−1.  相似文献   

8.
Pb1-3x/2Lax (Zr0.6Ti0.4)O3 thin films (0 ≤ x ≤ 0.08) were prepared on the Pt (1 1 1)/Ti/SiO2/Si (1 0 0) substrates by a sol-gel method. The morphology, preferred orientation, phase structure, dielectric and ferroelectric properties of the films have been investigated. Our results show that lanthanum doping is favorable to enhance crystalline and obtain (1 0 0)-preferred orientation of the films. Meanwhile, it is suggested that the films undergo a structure change from “rhombohedral” phase to monoclinic phase as the lanthanum-doped content is increased to x ≈ 0.05. Results of dielectric properties and ferroelectric properties indicate that lanthanum doping contributes to improve film dielectric constant and dielectric loss while it brings about a striking decrease in remnant polarization value. Possible explanations for the variations of electrical properties have been discussed in terms of preferred orientation, phase structure and large lattice distortion.  相似文献   

9.
Bi0.89Ti0.11FeO3 thin films with the thicknesses of 200-440 nm were fabricated on the 40-nm-thick PbZr0.2Ti0.79Nb0.01O3 (PZTN)-buffered Pt(1 1 1)/Ti/SiO2/Si substrates using a metal organic decomposition process. As a result of the good insulating property and high breakdown characteristic of the PZTN buffer layer, the leakage currents in the Bi0.89Tb0.11FeO3 films are significantly reduced. All the films show well-saturated and rectangular P-E hysteresis loops without any evident leaky behavior. The remnant polarization Pr and coercive field Ec for all Bi0.89Ti0.11FeO3 films are around 45-50 μC/cm2 and 200 kV/cm, respectively, and show weak dependent on the film thickness. The 200-nm-thick Bi0.89Ti0.11FeO3 film exhibits better fatigue-free characteristic and charge-retaining ability, and the domain backswitching is significantly restrained due to the strong anti-aging ability of the PZTN buffer layer.  相似文献   

10.
Nanocrystalline, uniform, dense, and adherent cerium oxide (CeO2) thin films have been successfully deposited by a simple and cost effective spray pyrolysis technique. CeO2 films were deposited at low substrate and annealing temperatures of 350 °C and 500 °C, respectively. Films were characterized by differential thermal analysis, X-ray diffraction, scanning electron microscopy, atomic force microscopy; two probe resistivity method and impedance spectroscopy. X-ray diffraction analysis revealed the formation of single phase, well crystalline thin films with cubic fluorite structure. Crystallite size was found to be in the range of 10-15 nm. AFM showed formation of smooth films with morphological grain size 27 nm. Films were found to be highly resistive with room temperature resistivity of the order of 107 Ω cm. Activation energy was calculated and found to be 0.78 eV. The deposited film showed high oxygen ion conductivity of 5.94 × 10−3 S cm−1 at 350 °C. Thus, the deposited material shows a potential application in intermediate temperature solid oxide fuel cells (IT-SOFC) and might be useful for μ-SOFC and industrial catalyst applications.  相似文献   

11.
Photocatalytic TiO2 films combined with Ag nanoparticles (NPs) embedded-SiO2 films were fabricated by means of a RF magnetron sputtering and subsequent rapid thermal annealing (RTA). X-ray diffraction results show that the TiO2 films have anatase phase when annealed at 500 °C. The Ag NPs were formed by deposition and subsequent annealing at 600 °C. Scanning electron microscopy (SEM) results show that the density of the NPs decreases with increasing Ag film thickness. For example, the average NP diameter varies from ~ 19.3 to ~ 55.9 nm as the film thickness increases from 2 to 12 nm. Transmittance measurements show that as the Ag NP size decreases, the plasmonic peaks shift towards the shorter-wavelength region and become narrower. It is further shown that under UV-illumination (352 nm), all the TiO2 films with the Ag NPs show higher methylene blue decomposition rates compared to the TiO2 only films and the TiO2 films with Ag NP (a 7 nm-thick Ag film) show the best decomposition rate among the samples possibly due to the combined effects of optimized localized field amplification and radiative efficiency.  相似文献   

12.
The nickel-zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films have been successfully deposited on stainless steel substrates using a chemical bath deposition method from alkaline bath. The films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), static water contact angle and cyclic voltammetry measurements. The X-ray diffraction pattern shows that deposited Ni0.8Zn0.2Fe2O4 thin films were oriented along (3 1 1) plane. The FTIR spectra showed strong absorption peaks around 600 cm−1 which are typical for cubic spinel crystal structure. SEM study revealed compact flakes like morphology having thickness ∼1.8 μm after air annealing. The annealed films were super hydrophilic in nature having a static water contact angle (θ) of 5°.The electrochemical supercapacitor study of Ni0.8Zn0.2Fe2O4 thin films has been carried out in 6 M KOH electrolyte.The values of interfacial and specific capacitances obtained were 0.0285 F cm−2 and 19 F g−1, respectively.  相似文献   

13.
Calcium copper titanate, CaCu3Ti4O12 (CCTO), thin film has been deposited by the soft chemical method on Pt/Ti/SiO2/Si (1 0 0) substrates at 700 °C for 2 h. The peaks were indexed as cubic phase belonging to the Im−3 space group. The film exhibited a duplex microstructure consisting of large grains of 130 nm in length and regions of fine grains (less than 80 nm). The CCTO film capacitor showed a dielectric loss of 0.031 and a dielectric permittivity of 1020 at 1 MHz. The J-V behavior is completely symmetrical, regardless of whether the conduction is limited by interfacial barriers or by bulk-like mechanisms. Based on impedance analyses, the equivalent circuit of CCTO film consisting of a resistor connected in series with two resistor-capacitor (RC) elements.  相似文献   

14.
The effect of substrate temperature on optical properties of CdZn(S0.8Se0.2)2 thin films deposited onto glass substrates by the spray pyrolysis method has been investigated. The average optical transmittance of the films was over 74% in the visible range. The optical absorption studies reveal that the transition is direct with band gap energy values between 2.86 and 2.92 eV. The optical constants such as refractive index and dielectric constant of the films were determined. According to variation of the substrate temperature, the important changes in absorption edge, refractive index and the dielectric constant were observed. The refractive index dispersion curves of the films obey the single oscillator model and oscillator parameters changed with substrate temperature. The most significant result of the present study is to indicate that substrate temperature of the film can be used to modify in the optical band gaps and optical constants of CdZn(S0.8Se0.2)2 thin films.  相似文献   

15.
(Cd0.8Zn0.2)S quantum dots with a mixture of both cubic (Zinc-blende) and hexagonal (Wurtzite) phases have been prepared within 75 min by mechanical alloying the stoichiometric mixture of Cd, Zn and S powders at room temperature in a planetary ball mill under Ar. The Rietveld analysis of X-ray powder diffraction data reveals relative phase abundances of both cubic and hexagonal phases and several microstructure parameters like lattice parameters, particle sizes, lattice strains, concentrations of different kinds of stacking faults, etc. in both the phases. At the time of formation, hexagonal phase dominates over the cubic phase (molar ratio ∼0.6:0.4), but in course of milling up to 15 h, the hexagonal phase partially transforms to cubic phase and the molar ratio becomes ∼0.4:0.6. Particle sizes of hexagonal and cubic phases reduce to ∼4.5 nm and 12.5 nm, respectively, after 15 h of milling. The hexagonal phase contains a significant amount of lattice strain in comparison to cubic phase. The presence of different kinds of stacking faults is revealed clearly from the high resolution transmission electron microscope (HRTEM) images.  相似文献   

16.
A series of Gd1−xCaxPO4·nH2O nanorods were prepared using a simple hydrothermal reaction which was optimized by tuning the pH values of the precursor. The resulted nanorods were characterized by X-ray diffraction, transmission electron microscopy, Fourier transformation infrared spectroscopy, and alternative current impedance technique. It is demonstrated that all Gd1−xCaxPO4·nH2O nanorods crystallized in a pure hexagonal structure. For x = 0, the particle dimension decreased with increasing the pH value. For x > 0, the solid solution limit of Ca2+ in GdPO4·nH2O nanorods was about 3 mol%, below which the lattice volume increased with increasing the doping level of Ca2+. The conductivities of nanorods were highly dependent on both the particle size and Ca2+ concentration, as indicated by the increased conductivity as particle size reduces or Ca2+ doping level increases. These observations were understood in terms of the dehydration and the introduction of HPO42− defects by Ca2+ doping.  相似文献   

17.
Pure and Gd-doped barium zirconate titanate (BaZr0.1Ti0.9O3, BZT) ceramics were prepared by solid state reaction method. Phase analysis showed the formation of the pyrochlore phase (Gd2Ti2O7) at about 5 mol% Gd doping in BZT. The microstructural investigation on the sintered ceramics showed that Gd doping significantly reduced the grain size of pure BZT ceramics, from about 100 μm to 2-5 μm. Change in the Gd concentration had minor influence on the grain size and on morphology. An increase in the Gd content decreased the Curie temperature (TC) of the BZT ceramics. The maximum dielectric constant at TC was observed for 2 mol% Gd and with further increase in Gd content the dielectric constant at TC decreased. The dielectric constant was significantly improved compared to that of pure BZT ceramic. Tunable dielectric materials with good dielectric properties can be prepared by doping BZT with Gd.  相似文献   

18.
ZnO-B2O3-SiO2-CaO glass frits were directly prepared by high temperature spray pyrolysis for use in Cu electrodes. The frits prepared at temperatures above 1400 °C were spherical, amorphous, of fine size and dense structure. The mean particle size and geometric standard deviation of the frits prepared at 1400 °C were 0.87 μm and 1.37, respectively. The temperatures of glass transition, crystallization and melting were 454, 534 and 800 °C, respectively. The glass layer fired at 800 °C had a dense structure due to the material's complete melting, despite some crystals being observed by SEM. A copper electrode formed from copper paste with glass frits had a dense structure when fired at 800 °C. The specific resistances of electrodes formed from copper paste with and without glass frits were 2.5 and 8.5 μΩ cm, respectively.  相似文献   

19.
This article describes a facile, low-cost, solution-phase approach to the large-scale preparation of Hg1−xCdxTe nanostructures of different shapes such as nanorods, quantum dots, hexagonal cubes of different sizes and different compositions at a growth temperature of 180 °C using an air stable Te source by solvothermal technique. The XRD spectrum shows that the crystals are cubic in their basic structure and reveals the variation in lattice constant as a function of composition. The size and morphology of the products were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The formation of irregular shaped particles and few nano-rods in the present synthesis is attributed to the cetyl trimethylammonium bromide (CTAB). The room temperature FTIR absorption and PL studies for a compositon of x = 0.8 gives a band gap of 1.1 eV and a broad emission in NIR region (0.5-0.9 eV) with all bands attributed to surface defects.  相似文献   

20.
The La2MoO6 mixed oxide was prepared by the cation complexation technique using citric acid as complexant agent. The main purpose of this work was to obtain a mesoporous powder with relatively high specific surface area. The thermal decomposition behavior of the metal complex was studied by thermal analysis and Fourier transform infrared spectroscopy. A specific surface area value of 15 m2 g−1 was obtained by nitrogen adsorption/desorption measurements. X-ray diffraction patterns of calcined mesoporous materials reveal that even though a low degree of crystallinity is attained, this phase may be obtained at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号