首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Ti-50Ni(at%)钎料实现了TZM合金与ZrC_p-W复合材料的真空钎焊连接,通过SEM、EDS、XRD等方法分析了接头界面的微观组织结构,研究了钎焊温度对TZM/Ti-50Ni/ZrC_p-W接头界面组织及性能的影响。结果表明:钎焊接头的典型界面结构为TZM/Ti-Mo+TiNi_3+Mo-Ti-W/Ti Ni+TiNi_3+W(s,s)+(Ti,Zr)C/ZrC_p-W。随着钎焊温度的升高,Ti-Mo固溶体层宽度逐渐增大,线状条纹增多、增宽,组织逐渐粗大,晶界变圆滑;接头的抗剪强度随钎焊温度升高先升高后降低,当钎焊温度为1340℃,保温10 min时,接头获得最大抗剪强度为146 MPa。  相似文献   

2.
在适当的工艺参数下,用(Ti-Zr-Cu-Ni)+W复合钎料真空钎焊Cf/SiC复合材料与钛合金,采用SEM,EDS和XRD分析接头组织结构,利用剪切试验检测接头的力学性能.结果表明,钎焊时复合钎料中的钛、锆与Cf/SiC复合材料反应,在Cf/SiC复合材料与连接层界面生成Ti3SiC2,Ti5Si3和少量TiC(ZrC)化合物的混合反应层,在连接层与钛合金界面形成Ti-Cu化合物扩散层.增强相钨粉能有效缓解接头的残余热应力,提高接头力学性能,在连接温度930℃,保温时间20 min的工艺条件下,增强相钨粉含量为15%(体积分数)时,接头抗剪强度最高为166 MPa.  相似文献   

3.
Abstract

Cf/SiC composite was brazed to Ti alloy using interlayer of Ag–Cu–Ti–W mixed powder. The effects of W content and brazing parameters on the microstructure and properties of the brazed joints were investigated. The results show that W grains mainly distribute in Ag phase in the brazing layer and provide the effects of reinforcement and lowering residual thermal stress on the joint. The room temperature and 500°C shear strengths of the joints performed at 500°C for 30 min with Ag–Cu–Ti–50W (vol.-%) are remarkably higher than the optimal strengths of the joints brazed with Ag–Cu–Ti.  相似文献   

4.
Ag-Cu+WC复合钎料钎焊ZrO2陶瓷和TC4合金   总被引:1,自引:0,他引:1       下载免费PDF全文
采用新型Ag-Cu+WC复合钎料进行ZrO2陶瓷和TC4合金钎焊连接,探究了接头界面组织及形成机制,分析了钎焊温度对接头界面结构和力学性能的影响. 结果表明,接头界面典型结构为ZrO2/TiO+Cu3Ti3O/TiCu+TiC+W+Ag(s,s)+Cu(s,s)/TiCu2/TiCu/Ti2Cu/TC4. 钎焊过程中,WC颗粒与Ti发生反应,原位生成TiC和W增强相,为Ti-Cu金属间化合物、Ag基和Cu基固溶体提供了形核质点,同时抑制了脆性Ti-Cu金属间化合物的生长,优化了接头的微观组织和力学性能. 随钎焊温度的升高,接头反应层的厚度逐渐增加,WC颗粒与Ti的反应程度增强. 当钎焊温度890 ℃、保温10 min时,复合钎料所得接头抗剪强度达到最高值82.1 MPa,对比Ag-Cu钎料所得接头抗剪强度提高了57.3%.  相似文献   

5.
Abstract

C/SiC composites and Nb were vacuum brazed with the Ti39·4Ni39·4Nb21·2 alloy being the active filler metal. The mechanical properties of the filler material, the microstructure and the strength of brazing joints were investigated. The results showed that the filler TiNiNb alloy has a tensile strength of 860?MPa, an elongation of 51% and an elastic modulus of 78?GPa. Both Ti and Nb elements in the filler reacted with C/SiC during the brazing process, and a well bonded C/SiC–Nb joint was obtained. The ductile filler metal released the thermal stress in the joint. When the brazing was performed at 1220°C for 20?min, the shear strength of brazed joints reached 149, 120 and 73?MPa at 20, 600 and 800°C respectively.  相似文献   

6.
Carbon fiber reinforced SiC (Cf/SiC) composite was successfully joined to TC4 with Ag-Al-Ti alloy powder by brazing. Microstructures of the brazed joints were investigated by scanning electron microscope, energy dispersive spectrometer, and x-ray diffraction. The mechanical properties of the brazed joints were measured by mechanical testing machine. The results showed that the brazed joint mainly consists of TiC, Ti3SiC2, Ti5Si3, Ag, TiAl, and Ti3Al reaction products. TiC + Ti3SiC2/Ti5Si3 + TiAl reaction layers are formed near Cf/SiC composite while TiAl/Ti3Al/Ti + Ti3Al reaction layers are formed near TC4. The thickness of reaction layers of the brazed joint increases with the increased brazing temperature or holding time. The maximum room temperature and 500 °C shear strengths of the joints brazed at brazing temperature 930 °C for holding time 20 min are 84 and 40 MPa, respectively.  相似文献   

7.
The objective of this work is to determine the best parameters for brazing ceramic joints of pre-metallized Al2O3 with Ti by a plasma process using amorphous ribbons of Cu49Ag45Cex alloy as the addition metal. The alloys were prepared in an arc oven, and later processed by melt spinning, varying Cerium content by 4–6%. Brazing took place in a vacuum oven and the following variables were analysed: deposition time of the Ti film and temperature and brazing time, which were related to the flex resistance in three points of the brazed joint. A linear regression equation was obtained, and the interaction between these factors was verified. The metallized ceramic surfaces showed excellent uniformity and the brazed joints demonstrated very good adhesion, achieving flex resistance values of up to176.8 MPa.  相似文献   

8.
采用Ti-Zr-Be活性钎料作为连接层,在一定工艺参数下真空钎焊Cf/SiC复合材料和304不锈钢.利用SEM,EDS,XRD和俄歇谱仪分析接头微观组织结构,利用剪切试验检测接头力学性能,分析了工艺参数对接头抗剪强度的影响.结果表明,在复合材料附近形成ZrC+TiC+Be2C/Ti-Si反应层,连接层中主要包含FeZr2,锆基固溶体,BeTi,Ti-Zr固溶体等反应产物,304不锈钢附近形成FeTi/αFe反应层.在连接温度为950℃,连接时间为60min时,接头室温抗剪强度最高为109.3 MPa,断裂位置为Cf/SiC复合材料与中间层连接界面靠近复合材料端.  相似文献   

9.
A novel resistance brazing method aided by numerical simulation, in which the brazing is completed through several preliminary heatings and a subsequent final heating aided by the numerical simulation is presented. The preliminary heating is performed with a relatively low electric energy input so that the uniformity of the surface contact condition between two parts can be improved due to local melting and subsequent solidification and so that the electric current data can be acquired for preparing analytical conditions necessary to the numerical simulation. The final heating is performed with an energizing condition determined by the numerical simulation in advance. To prove the efficacy of the resistance brazing method aided by the numerical simulation, Ti–Ni alloy and type 304 stainless steel wires with diameters of 96 μm both were butt-joint brazed using Au–Cu brazing filler metal supplied with the individual metal plating. The brazed joints had tensile strengths ranging from 74 to 448 MPa in accordance with the energizing conditions.  相似文献   

10.
In order to produce a high strength brazed joint of A5056 aluminium alloy containing magnesium of about 5 mass%, the authors applied a flux-free brazing method with the aid of ultrasonic vibration to the aluminium alloy by selecting pure Ag foil as brazing filler metal and examined the effect of brazing conditions on the joint properties. The main results obtained in this study are as follows.

At a brazing temperature of 570°C, just above the eutectic point of Al–Ag binary system, application of ultrasonic vibration for 4.0 s provided the brazed joint with the maximum tensile strength and the strength decreased with the application time. When the brazing temperature was varied from 550 to 580°C and the application time of ultrasonic vibration was kept constant at 4.0 s, the joint brazed at 560°C attained the maximum tensile strength and fractured in the base metal. It was found that using a pure Ag foil as brazing filler metal successfully brazed A5056 aluminium alloy and the joint strength was equivalent to that of the base metal. Fracture of the joint was prone to occur along the (Al3Mg2 + Al solid solution) phase with high hardness formed at the grain boundary of the base metal. The amount of the hard (Al3Mg2 + Al solid solution) phase increased with the ultrasonic application time and the brazing temperature. It seemed that the increase of the hard (Al3Mg2 + Al solid solution) phase mainly caused the brazed joint strength to decrease.  相似文献   

11.
A new low melting point filler metal, Al-Si-Cu-Ni-RE, was developed for the furnace brazing of aluminum alloy 6063. Flux-assisted brazing was conducted at 560 °C using the new filler metal and AlF3-CsF-KF flux. Microstructure of the brazed joints were studied by means of SEM, TEM, and EDS. Shear strength and micro-Vickers hardness of joints had been tested. Results show that sound joints could be obtained with the filler metal and the flux. Microstructure characterization of the brazed joint shows dendritic CuAl2 phase was distributed evenly and Si-phase was spheroidized and refined, which was embedded in CuAl2 dendrites with modification of rare-earth element. Shear strength test results show that the joints with Al-Si-Cu-Ni-RE filler metal achieved average shear strength of 62.5 MPa, 14.5% more than the shear strength of brazed joints with Chinese HL401 filler metal. The micro-Vickers hardness of joint after T6 treatment is about 83 HV. The hardness of the joints after just brazing and after solution treatment was higher than the hardness of the base metal.  相似文献   

12.
TiBw/TC4 composite was brazed to Ti60 alloy successfully using TiZrNiCu amorphous filler alloy, and the interfacial microstructures and mechanical properties were characterized by SEM, EDX, XRD and universal tensile testing machine. The typical interfacial microstructure was TiBw/TC4 composite/β-Ti + TiB whiskers/(Ti, Zr)2(Ni, Cu) intermetallic layer/β-Ti/Ti60 alloy when being brazed at 940 °C for 10 min. The interfacial microstructure evolution was influenced strongly by the diffusion and reaction between molten fillers and the substrates. Increasing brazing temperature decreased the thickness of brittle (Ti, Zr)2(Ni, Cu) intermetallic layer, which disappeared finally when the brazing temperature exceeded 1020 °C. Fracture analyses indicated that cracks were initialized in the brittle intermetallic layer when (Ti, Zr)2(Ni, Cu) phase existed in the brazing seam. The maximum average shear strength of joints reached 368.6 MPa when brazing was conducted at 1020 °C. Further increasing brazing temperature to 1060 °C, the shear strength was decreased due to the formation of coarse lamellar (α+β)-Ti structure.  相似文献   

13.
Reliable brazing of TZM alloy and ZrC particle reinforced (ZrCp) W composite was achieved in this study by using Ti-28Ni eutectic brazing alloy. The typical interfacial microstructure of TZM/Ti-28Ni/ZrCp-W brazed joint consisted of a Ti solid solution (Ti(s, s)) layer, a continuous Ti2Ni layer and a diffusion layer mainly composed of W particles and (Ti, Zr)C particles. With an increase of brazing temperature, more ZrC particles and W particles entered the molten brazing alloy, which broadened the brazing seam and diminished the Ti2Ni layer, resulting in the disappearance of the Ti2Ni layer eventually. Meanwhile, more Ti(s, s) stripes were observed on the TZM side. The presence of continuous Ti2Ni intermetallic phase and Ti(s, s) stripes structure in joints deteriorated the joining properties, which resulted in the formation of brittle fracture under shear test. In addition, the fracture path was related to the brazing temperature, and cracks initiate and propagate in the continuous Ti2Ni layer at lower temperatures. However, the fracture path tended to be located at the TZM substrate close to the interface between TZM and the brazing seam when the brazing temperature exceeded 1040 °C. The optimal room temperature shear strength reached 120.5 MPa when brazed at 1040 °C for 10 min and the fracture surface exhibited cleavage fracture characteristics, and the shear strength at high temperature of 800 °C for the specimens with highest shear strength at room temperature reached 77.5 MPa.  相似文献   

14.
Electron beam welding experiments of titanium alloy to stainless steel with V, Ni, Cu and Ag filler metals were carried out. The interfacial microstructures of the joints were examined by optical microscopy, scanning electron microscopy, and x-ray diffraction analysis. Mechanical properties of the joints were evaluated according to tensile strength and microhardness. The results showed that all the filler metals were helpful to restrain the Ti-Fe intermetallics formed in the Ti/Fe joint. The welds with different filler metals were all characterized by solid solution and interfacial intermetallics. And the type of solid solution and interfacial intermetallics were depended on the metallurgical reactions between the filler metals and base metals. The interfacial intermetallics were Fe2Ti + Ni3Ti + NiTi2, TiFe, Ti2Ag, and Cu2Ti + CuTi + CuTi2 in the joints welded with Ni, V, Ag, and Cu filler metals, respectively. The tensile strengths of the joints were primarily determined by the hardness of the interfacial intermetallics. The highest tensile strength was obtained in the joint welded with silver filler metal, which is about 310 MPa.  相似文献   

15.
Dissimilar metal vacuum brazing between TC4 titanium alloy and 304 stainless steel was conducted with newly designed Cu-Ti-Ni-Zr-V amorphous alloy foils as filler metals. Solid joints were obtained due to excellent compatibility between the filler metal and stainless steel substrate. Partial dissolution of stainless steel substrate occurred during brazing. The shear strength of the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil was 105 MPa and that with Cu37.5Ti25Ni12.5Zr12.5V12.5 was 116 MPa. All the joints fractured through the gray layer in the brazed seam, revealing brittle fracture features. Cr4Ti, Cu0.8FeTi, Fe8TiZr3 and Al2NiTi3C compounds were found in the fractured joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil, and Fe2Ti, TiCu, Fe8TiZr3 and NiTi0.8Zr0.3 compounds were detected in the joint brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil. The existence of Cr-Ti, Fe-Ti, Cu-Fe-Ti, and Fe-Ti-V intermetallic compounds in the brazed seam caused fracture of the resultant joints.  相似文献   

16.
氧化铝基复合陶瓷-金属钎焊界面的热应力   总被引:3,自引:0,他引:3       下载免费PDF全文
用Ag-Cu-Ti钎料钎焊SiCw/Al2O3复合陶瓷和金属时,陶瓷与钎料发生化学反应,在陶瓷表面形成由TiO、TiC等物相组成的反应层。采用有限元法,对SiCw/Al2O3复合陶瓷/反应层界面的热应力进行了计算。结果表明,复合陶瓷/反应层界面的残余应力变化急剧,最大拉应力位于晶须、基体和反应层交界处;晶须内部及其表面存在较高的双向压应力,Al2O3基体主要承受垂直于界面的拉应力;SiC晶须/反应层界面及其附近的反应产物TiC内具有较高的平行于界面的拉应力,当连接界面承受剪力作用时,SiC晶须/反应层界面和TiC处极易破坏。借助TEM和SEM观察了复合陶瓷/反应层界面区的精细结构和剪切断口形貌,并利用计算结果对观察到的现象进行了分析。  相似文献   

17.
C_f/SiC复合材料与钛合金Ag-Cu-Ti-C_f复合钎焊   总被引:1,自引:0,他引:1       下载免费PDF全文
采用Ag-Cu-Ti-Cf(Cf:碳纤维)复合钎料作中间层,在适当的工艺参数下真空钎焊Cf/SiC复合材料与钛合金,利用SEM,EDS和XRD分析接头微观组织结构,利用剪切试验检测接头力学性能.结果表明,钎焊时复合钎料中的钛与Cf/SiC复合材料反应,在Cf/SiC复合材料与连接层界面形成Ti3SiC2,Ti5Si3和少量TiC化合物的混合反应层.复合钎料中的铜与钛合金中的钛发生互扩散,在连接层与钛合金界面形成不同成分的Cu-Ti化合物过渡层.钎焊后,形成碳纤维强化的致密复合连接层.碳纤维的加入缓解了接头的残余热应力,Cf/SiC/Ag-Cu-Ti-Cf/TC4接头抗剪强度明显高于Cf/SiC/Ag-Cu-Ti/TC4接头.  相似文献   

18.
对Al2O3颗粒增强复合钎料钎焊Al2O3/Al2O3接头的残余应力场进行了数值模拟,分析了Al2O3陶瓷颗粒的加入对陶瓷接头残余剪切应力的影响.模拟发现,陶瓷接头的最大应力位于陶瓷-钎缝界面,陶瓷颗粒的加入对钎焊接头应力起到了缓解作用,其缓解程度随陶瓷颗粒体积分数的增加而增大;在陶瓷颗粒百分比一定的情况下,钎缝厚度的...  相似文献   

19.
Abstract

Diode laser brazing of aluminium alloy (A5052) to interstitial free steel (IF steel) or type 304 stainless steel (SUS304) was conducted using aluminium filler metal (BA4047) with Nocolock flux. The processing parameters of laser power, wire feed rate and travel speed were varied. The strength of lap joints of A5052 on steels was evaluated by tensile shear test. The joint strength of A5052/steels was increased with increasing laser power and reached the maximum strength, more than approximately 80% of the A5052 base metal strength, at a laser power of 1300 W. Voids and incomplete penetration of filler metal were observed at the A5052/braze layer interface when the laser power was below 1100 W. The Fe–Al intermetallic compounds were formed at the steel/braze layer interfaces and grew drastically when the laser power exceeded 1300 W. Superior brazability of A5052/steels was found at brazing conditions corresponding to a temperature of filler metal droplet of 1050–1250 K.  相似文献   

20.
Abstract

ZrB2–SiC ceramic composite was brazed by using TiZrNiCu active filler metal. The microstructure and interfacial phenomena of the joints were analysed by means of SEM, energy dispersive X-ray spectroscopy and X-ray diffraction. The joining effect was evaluated by shear strength. The results showed that the reaction products of the ZrB2–SiC ceramic composite joint were TiC, ZrC, Ti5Si3, Zr2Si, Zr(s,s) and (Ti, Zr)2 (Ni, Cu), and the microstructure was separately ZrB2–SiC/Zr(s,s)/Ti5Si3+Zr2Si+TiC+ZrC+(Ti,Zr)2(Ni,Cu)/Zr(s,s)/ZrB2–SiC. A conceptual interface evolution model was established to explain the interface evolution mechanism. The maximum shear strength of the brazed joints was 143·5 MPa at the brazing temperature T of 920°C and the holding time t of 10 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号