首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
Akind of white OLED with single luminescent layer was designed, in which rubrene was doped in Liq. The structure of the devices is ITO/PVK:TPD/Liq: Rubrene/Alq3/Al. The brightness of the devices comes to 3120 cd/m^2(at a driving voltage of 25 V), the CIE coordinates of the typical devices is (0.308,0.347), and the coordinates is very close to the white equi-energy point. The emitting and luminescent characteristics of the devices were discussed.  相似文献   

2.
The hole transporting layer (HTL) of organic light-emitting device (OLED) was processed by vacuum deposition and spin coating method, respectively, where N,N'-biphenyl-N, N'-bis(3-methylphenyl)- 1, l'-biphenyl-4,4' -diamine (TPD) and poly (vinylcarbazole) (PVK) acted as the hole-transport materials. Tris-(8-hydroxyquinoline)- aluminum (Alq3) was utilized as both the light-emitting layer and the electron transporting layer. The basic structure of the device cell was: indium-tin-oxide (1TO)/PVK : TPD/Alq3/Mg:Ag. The electroluminescent (EL) characteristics of devices were characterized. The results showed that the peak of EL spectra was located at 530 nm, which conformed to the characterizing spectrum of Alq3. Compared with using vacuum deposition method, the green emission with a maximum luminance up to 26135 cd/m2 could be achieved at a drive voltage of 15 V by selecting proper solvent using spin-coating technique, and its maximum lumi nance efficiency was 2.56 lm/W at a drive voltage of 5.5 V.  相似文献   

3.
Small molecular Organic light-emitting diodes (OLEDs) with high efficiency composed of 2,9-dimethyl-4,7-diphenyl-l,10-phenanthroline (BCP) and N, N%bis-(1-naphthyl)-N, N′,bipheny1-l,1′-biphenyl-4,4′- diamine (NPB) as an electron transporting layer and an emitting layers respectively were studied. Two devices of indium-tin-oxide (ITO)/NPB/BCP/8-hydroxyquinoline aluminum (Alq3)/Mg:Ag and ITO/NPB/BCP/ Mg:Ag with unique simple structure were fabricated. The luminance-voltage and current density-voltage characteristics of devices were investigated. The results demonstrated that the maximum luminance of the double and triple-layer devices is 11500cd/m^2 and 5000 cd/m2 at 15V, respectively. The maximum luminous power efficiency is 1.21m/W at the luminance of 300cd/m^2 and the luminous efficiency of 2.7cd/A. The peak of Electroluminescence (EL) spectrum locates at 433nm and the Commissions Internationale d'Eclairage (CIE) coordinates are (0.18, 0.17), which is consistent with the Photoluminescent (PL) spectrum of NPB. The bright blue light emission is independent on the variation of bias voltage. The diversity of device performance with two different structures was discussed.  相似文献   

4.
We have designed a new structure blue emission device with doped Alq3 of 3% in hole transmission layers of NPB. The CIE coordination of the devices is (0.17,0.19). The maximum electroluminescence efficiency is 4.1 cd/A at 11 V, the brightness is 118.8 cd/m^2 at 7 V, and the maximum brightness is 10770 cd/m^2 at 13 V.  相似文献   

5.
An insert layer structure organic electroluminescent device(OLED) based on a new luminescent material (Zn(salen)) is fabricated. The configuration of the device is ITO/CuPc/NPD/Zn(salen)/Liq/LiF/A1/CuPc/NPD/Zn(salen)/Liq/LiF/A1. Effective insert electrode layers comprising LiF(1nm)/Al(5 nm) are used as a single semitransparent mirror, and bilayer cathode LiF(1 nm)/A1(100 nm) is used as a reflecting mirror. The two mirrors form a Fabry-Perot microcavity and two emissive units. The maximum brightness and luminous efficiency reach 674 cd/m^2 and 2.652 cd/A, respectively, which are 2.1 and 3.7 times higher than the conventional device, respectively. The superior brightness and luminous efficiency over conventional single-unit devices are attributed to microcavity effect.  相似文献   

6.
Thin films of ZnO were electrodeposited from an aqueous solution of Zn(NO3 )2 on indium tin oxide(ITO)-covered glass substrate. The analysis of X-ray diffraction(XRD) and scanning electron micrograph (SEM) indicated that the obtained ZnO films had a compact hexagonal wurtzite type structure with preferable (002) growth direction. A sharp near-UV emission peak located at 380 nm and a strong orange-red emission peak located at 593 nm were observed in the photoluminescence, when excited with 325 nm wavelength at room temperature. Then the prepared ZnO films were introduced as anode phosphors into the field emission test. It was found that orange-red cathode-luminescence was observed and the luminescent brightness was enhanced by annealing. When annealing temperature increased about 600 ℃, the photoluminescence with peak of 531 nm and the green cathode-luminescence were observed. The tests showed that the brightness of about 2 × 102 cd/m^2 was obtained at electric field of 2 V/μm for annealed sample. The results revealed that the film could be a good kind of low-voltage drived cathode-luminescence phosphor.  相似文献   

7.
The organic light-emitting devices (OLEDs) using 4,4’,4’’-tris{N-(3-methylphenyl)-N-phenylamin}triphenylamine (m-MTDATA) and MoO3 or 1,3,5-triazo-2,4,6-triphosphorine-2,2,4,4,6,6-tetrachloride (TAPC) and MoO3 as the hole-injection layer (HIL) were fabricated. MoO3 can be expected to be a good injection layer material and thus enhance the emission performance of OLED. The highest occupied molecular (HOMO) of MoO3 is between those of m-MTDATA or TAPC and N,N’-bis-(1-naphthyl)-N,N’-diphenyl-1,1’-biphenyl-4,4’-diamine (NPB), which reduces the hole-injection barrier and improves the luminance of the OLEDs. The current efficiency is improved compared with that of the device without the MoO3 layer. The highest luminous efficiency of the device with 2-nm-thick MoO3 as HIL is achieved as 5.27 cd/A at 10 V, which is nearly 1.2 times larger than that of the device without it. Moreover, the highest current efficiency and power efficiency of the device with the structure indium-tin oxide (ITO)/TAPC (40 nm)/MoO3 (2 nm)/TcTa:Ir(ppy)3 (10%, 10 nm)/ tris-(8-hydroxyquinoline) aluminium (Alq) (60 nm)/LiF (1 nm)/Al are achieved as 37.15 cd/A and 41.23 lm/W at 3.2 V and 2.8 V, respectively.  相似文献   

8.
By using air-stable alumminum as cathode,molecular doped polymer (MDP)blue light emitting diodes(LEDs)were constructed.Poly(N-vinylcarbazole(PVK)doped with,1,1,4,4-tetrapheny 1-1,3-butadiens(TPB)was used as the light-emitting layer,a layer of 2-(4-biphenylyl)-5-(4-terbutypheny)1-3,4-oxadiazole(PBD) as hole-blocking,electron-transporting layer and a layer of tris(8-quinolinolate)-Aluminum(Alq3)film also worked as an electron-transporting layer.The device with structure of ITO/PVK;TPB/PBD/Alq3/Al was fabricated.Blue emis-sion began at about 4V,more than 1000 cd/m^2 was achieved at 14V.This is the lowest turn-on voltage for polymeric lgiht-emitting diodes(PLEDS)used air-stable elec-trodes.Such low-operating voltage,especially using air-stable aluminum as cathode,may be helpful for the devices to be used in commercially viable displays.  相似文献   

9.
Remarkable improvement in efficiency and stability has been observed in a doped organic electroluminescence device,which consists of a holetransport layer,an electron-transport layer and a luminescent layer.The holetransport layer is a N,N‘-bis(3-methyphenyl)-N,N‘-diphenylenzidine film,The doped emitting layer consists of 8-(quinolinolate)-aluminum as the host and rubrene as the emission dopant.The doed device demonstrated a brighness in excess of 40000cd/m^2 and the maximum external quantum efficiency of 3.4%,which is about six times and four times respectively greater than those of the undoped device,For no packaged deviced,a luminance half-life on the order of about 230h has been achieved under a constant current density of 15mA/cm^2,starting at 500cd/m^2 at the room temperature.  相似文献   

10.
An organic light-emitting diode(OLED) device with high efficiency and brightness is fabricated by inserting CuO_x/Cu dual inorganic buffer layers between indium-tin-oxide(ITO) and hole-transport layer(HTL). The CuO_x/Cu buffer layer limits the operating current density obviously, while the brightness and efficiency are both enhanced greatly. The highest brightness of the optimized device is achieved to be 14 000 cd/m~2 at current efficiency of 3cd/A and bias voltage of 15 V, which is about 50% higher than that of the compared device without CuO_x/Cu buffer layer. The highest efficiency is achieved to be 5.9 cd/A at 11.6V with 3400 cd/m~2, which is almost twice as high as that of the compared device.  相似文献   

11.
A new kind of rare earth (RE) complex Tb(o-MBA)3phen was synthesized and used as an emitting material in electroluminescence. The material was doped into poly(N-vinylcarbazole) (PVK) as the emitting layer,which was made by spin coating. Three kinds of devices were fabricated with the structures: (A) ITO/PVK:Tb(o-MBA)3phen/LiF/A1; (B) ITO/PVK:Tb(o-MBA)3phen/BCP/AIQ3/LiF/A1; (C) ITO/BCP/PVK:Tb(o-MBA)3phen/A1Q3/LiF/A1. Bright green emission could be obtained from device (A) and (C). The photoluminescence (PL) and electroluminescence (EL) mechanisms of this material had been investigated. Since there was an overlap between the PL spectrum of PVK and the excitation spectrum of the terbium complex, there should be a F6rster energy transfer process between them. The excitation spectrum of PVK doped Tb(o-MBA)3phen system is similar with the excitation spectrum of PVK,yet it is different from that of Tb(o-MBA)3phen. So, the emission of Tb(o-MBA)3phen should partly come from the excitation of PVK while in the organic light-emitting diode (OLED), based on Tb(o-MBA)3phen, the emission mainly comes from the direct recombination of electron and hole. Bright green emission can be obtained from the optimized multi-layer device (C) and the highest EL brightness reached 180 cd/m2 at the voltage of 17 V.  相似文献   

12.
Fabrication of flexible organic light-emitting diodes(FOLEDs) with ITO/PVK :TPD/Alq3/Al configuration prepared on PET substrates is reported. Alq3 is used as the light-emitting material. The curves of the current density vs. voltage,optical current vs. voltage and quantum efficiency vs. current density of the devices are investigated. Compared the devices with the ones that have the same configuration and are fabricated under the same conditions but on glass substrates,the characteristics of the two kinds of devices are very similar except that the threshold voltage of the flexible FOLEDs is a little higher. Under the driving voltage of 20V,the corresponding brightness and the external quantum efficiency are 1000 cd/m^2 and 0. 27%, respectively. In addition, the anti-bend ability of the devices is tested and the reasons of failure of the devices are analyzed.  相似文献   

13.
There is an emission peak at 494 nm in the electroluminescence (EL) of PVK [poly(n-vinylcarbazole)]: Eu(o-BBA)3(phen) besides PVK exciton emission and Eu3+ characteristic emissions. Both the peaking at 494 nm emission and PVK emission influenced the color purity of red emission from Eu(o-BBA)3(phen). In order to restrain these emissions and obtain high intensity red emission, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7,-tetramethyljulolidy-9-enyl)-4Hpyran (DCJTB) and Eu(o-BBA)3(phen) were co-doped in PVK solution and used as the active emission layer. The EL intensity of co-doped devices reached to 420 cd/m2 at 20 V driving voltage. The chromaticity coordinates of EL was invariable (x = 0.55, y = 0.36) with the increase of driving voltage. For further improvement of EL intensity, organic–inorganic hybrid devices (ITO/active emission layer/ZnS/Al) were fabricated. The EL intensity was increased by a factor of 2.5 [(420 cd/m2)/(168 cd/m2)] when the Eu complex was doped with an efficient dye DCJTB, and by a factor of ≈4 [(650 cd/m2)/(168 cd/m2)] when in addition ZnS layer was deposited on such an emitting layer prior to evaporation of the Al cathode.  相似文献   

14.
A series of fluorene‐based oligomers with novel spiro‐annulated triarylamine structures, namely DFSTPA, TFSTPA, and TFSDTC, are synthesized by a Suzuki cross‐coupling reaction. The spiro‐configuration molecular structures lead to very high glass transition temperatures (197–253 °C) and weak intermolecular interactions, and consequently the structures retain good morphological stability and high fluorescence quantum efficiencies(0.69–0.98). This molecular design simultaneously solves the spectral stability problems and hole‐injection and transport issues for fluorene‐based blue‐light‐emitting materials. Simple double‐layer electroluminescence (EL) devices with a configuration of ITO/TFSTPA (device A) or TFSDTC (device B)/ TPBI/LiF/Al, where TFSTPA and TFSDTC serve as hole‐transporting blue‐light‐emitting materials, show a deep‐blue emission with a peak around 432 nm, and CIE coordinates of (0.17, 0.12) for TFSTPA and (0.16, 0.07) for TFSDTC, respectively, which are very close to the National Television System Committee (NTSC) standard for blue (0.15, 0.07). The maximum current efficiency/external quantum efficiencies are 1.63 cd A?1/1.6% for device A and 1.91 cd A?1/2.7% for device B, respectively. In addition, a device with the structure ITO/DFSTPA/Alq3/LiF/Al, where DFSTPA acts as both the hole‐injection and ‐transporting material, is shown to achieve a good performance, with a maximum luminance of 14 047 cd m?2, and a maximum current efficiency of 5.56 cd A?1. These values are significantly higher than those of devices based on commonly usedN,N′‐di(1‐naphthyl)‐N,N′‐diphenyl‐[1,1′‐biphenyl]‐4,4′‐diamine (NPB) as the hole‐transporting layer (11 738 cd m?2 and 3.97 cd A?1) under identical device conditions.  相似文献   

15.
Three kinds of red electroluminescent (EL) polymers based on polyfluorene as blue host and 2,1,3‐benzothiadiazole derivatives with different emission wavelengths as red dopant units on the side chain are designed and synthesized. The influence of the photoluminescence (PL) efficiencies and emission wavelengths of red dopants on the EL efficiencies and color purities of the resulting polyfluorene copolymers of dopant/host system is investigated by adjusting the electron donating ability of the donor units in D‐π‐A‐D typed 2,1,3‐benzothiadiazole derivatives. The devices of these red‐emitting polymers realize remarkable EL efficiency/color purity trade‐offs. The single‐layer devices with the configuration of ITO/PEDOT:PSS/Polymer/Ca/Al show pure red emission at 624 nm with a luminous efficiency of 3.83 cd A?1 and CIE of (0.63, 0.35) for PFR1, saturated red emission at 636 nm with a luminous efficiency of 2.29 cd A?1 and CIE of (0.64, 0.33) for PFR2, respectively. By introduction of an additional electron injection layer PF‐EP(Ethanol soluble phosphonate‐functionalized polyfluorene), high performance pure and saturated red emission two‐layer devices (ITO/PEDOT:PSS/Polymer/PF‐EP/LiF/Al) were achieved with maximum luminous efficiencies of 5.50 cd A?1 and CIE of (0.62, 0.35) for PFR1, 3.10 cd A?1 and CIE of (0.63, 0.33) for PFR2, respectively, which are the best results for pure and saturated fluorescent red EL polymers reported so far.  相似文献   

16.
We reported on the fabrication of organic light-emitting devices (OLEDs) utilizing the two Al/Alq3 layers and two electrodes. This novel green device with structure of Al(110 nm)/tris(8-hydroxyquinoline) aluminum (Alq3)(65 nm)/Al(110 nm)/Alq3(50 nm)/N,N′-dipheny1-N, N′-bis-(3-methy1phyeny1)-1, 1′-bipheny1-4, 4′-diamine (TPD)(60 nm)/ITO(60 nm)/Glass. TPD were used as holes transporting layer (HTL), and Alq3 was used as electron transporting layer (ETL), at the same time, Alq3 was also used as emitting layer (EL), Al and ITO were used as cathode and anode, respectively. The results showed that the device containing the two Al/Alq3 layers and two electrodes had a higher brightness and electroluminescent efficiency than the device without this layer. At current density of 14 mA/cm2, the brightness of the device with the two Al/Alq3 layers reach 3693 cd/m2, which is higher than the 2537 cd/m2 of the Al/Alq3/TPD:Alq3/ITO/Glass device and the 1504.0 cd/m2 of the Al/Alq3/TPD/ITO/Glass. Turn-on voltage of the device with two Al/Alq3 layers was 7 V, which is lower than the others.  相似文献   

17.
用磷光材料Ir(ppy)3制备了高效率顶部发射绿色有机发光二极管(OLED),器件的结构为:ITO/Ag/NPB/Ir(ppy)3(5wt%):TPBI/TPBI/LiF/Al。研究发现与传统的无微腔结构器件相比顶部发射器件的性能有大幅度提高,其最大效率为18cd/A。通过使用F-P腔,器件的电致发光(EL)寿命由7.6μs降低为7.1μs,有效地缓解了效率随电流密度增大而下降的问题。顶部发射器件EL共振的主峰位于505nm处,发射光谱半峰宽(FWHM)窄化为23nm,色纯度为(x=0.122,y=0.671),发射光随探测角度变化较小。最后,分析了其瞬态光电性能变化原因。  相似文献   

18.
首次报道了采用8-羟基喹啉镓螯合物作为发光层制备有机薄膜电致发光器件,器件的结构为:ITO导电玻璃/TPD/Gaq3/Al。研究了Gaq3薄膜的光致发光和器件的电致发光机理,同时测量和研究了器件的电流密度--电压(J-V)特性和发光亮度-电压(B-V)特性。结果表明器件的电致发光峰值波长为540nm,在20V直流电压驱动下的最大发光亮度约2500cd/m^2明显高于上同结构和工艺参数制备的Alq3  相似文献   

19.
We demonstrate novel organic light‐emitting diode (LED) materials that contain a green phosphorescent dye (dmbpy)Re(CO)3Cl (dmbpy = 4,4′‐dimethyl‐2,2′‐bipyridine), and a red fluorescent dye 4‐dicyanomethylene‐6‐(p‐dimethylaminostyryl)‐2‐methyl‐4H‐pyran (DCM) as dopants and polyvinylcarbazole (PVK) as the host. The photoluminescence (PL) and electroluminescence (EL) properties of these complex materials were studied. The energy transfer efficiency from PVK host to DCM is increased by the (dmbpy)Re(CO)3Cl co‐dopant, which has an emission energy between that of PVK and DCM. The (dmbpy)Re(CO)3Cl, which emits a long‐lived phosphorescence, is used as an energy coupler, providing the possibility to harvest both singlet and triplet energy in the devices. The pure red emission from DCM was observed from PL and EL spectra of (dmbpy)Re(CO)3‐Cl(> 2.0 wt.‐%):DCM(> 0.5 wt. %) doped PVK films, demonstrating an efficient energy transfer from PVK and (dmbpy)Re(CO)3‐Cl to DCM. By optimizing the concentration of DCM and (dmbpy)Re(CO)3Cl in PVK, a maximum EL quantum efficiency of 0.42 cd A–1 at a current density of 9.5 mA cm–2 was obtained. The EL quantum efficiency of the doubly doped device is significantly enhanced in comparison with both a DCM‐only doped PVK device and a DCM‐doped PVK device with the green fluorescent dye Alq3 as co‐dopant. The improvement in the operating characteristics of the phosphorescent and fluorescent dye doubly doped device is attributed to efficient energy transfer in the system, in which both triplet and singlet excitons are used for resultant emission in the polymer device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号