首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
《广东化工》2021,48(1)
本文系统分析了温度、声波频率、声压级对GeldartB类颗粒初始流化速度和反应器内压力波动的影响规律。实验结果显示:当反应器内加入声场,颗粒的初始流化速度随着温度的升高急剧下降,随声压级的增大而减小,随声波频率的增大先减小后增大,并存在一个最佳频率范围。当温度超过400℃后,声压级对颗粒最小流化速度的影响增大。压力波动标准方差随气速的增大而增大;当声压级大于110 dB和声波频率处于100~200 Hz时压力波动标准偏差和颗粒初始流化速度达到最小值。  相似文献   

2.
声场流化床A类颗粒浓度分布研究   总被引:4,自引:1,他引:3  
在内径140 mm,高1 600 mm的鼓泡流化床中,以流化催化裂化(FCC)颗粒为流化介质,采用光导纤维探针测定不同轴/径向位置的颗粒浓度分布.考察了操作气速和外加声场对密相区颗粒浓度的影响.结果表明,鼓泡床密相区颗粒浓度沿轴向逐渐减小,沿径向呈抛物线分布.声场的引入可以降低颗粒起始流化速度:声压级越大,起始流化速度越小:固定声压频率在150 Hz时颗粒起始流化速度最小.1随着声压强度的增大,床层中心区和上部密相区颗粒浓度增大.固定声压级,频率在100~400 Hz颗粒浓度较大,频率低于100 Hz或高于400 Hz时,声波的作用效果减弱.  相似文献   

3.
在内径4.3mm微小流化床中,考察了声场对FCC及石英砂颗粒流化质量的影响。重点讨论了声压级与频率对微小流化床最小流化速度的影响。结果表明,声场能改善微小流化床流化质量。尤其对于51μm石英砂颗粒,声场可以使其消除沟流,实现稳定流化。声压越大,声场对微小流化床流化质量改善越明显。最小流化速度随声压增高呈单调下降趋势。相同声场条件下,声波对微小流化床最小流化速度数值降低幅度大于大尺度流化床。声场对微小流化床最小流化速度的影响存在最佳频率。但不同颗粒的最佳频率不同。内径4.3mm流化床,51,67,83μm石英砂颗粒与83μmFCC颗粒对应的最佳频率分别为90,90,140和140Hz。在一定的声压与频率下,声场可以降低最小流化速度约9%~21%。对于微小流化床,床径越小,则床层空隙率越大,越有利于实现外场强化,最小流化速度的降低幅度也逐渐增大。  相似文献   

4.
声场流化床中超细颗粒聚团受力与尺寸   总被引:4,自引:0,他引:4  
在内径40 mm的流化床中,采用平均粒径为7.4 mm的超细铁矿颗粒进行声场流态化实验. 结果显示,聚团尺寸随声压级增大逐渐减小,在固定声压级的条件下存在最优声波频率,本实验为130 Hz. 由铁矿颗粒声场流态化中聚团受力分析提出聚团受力平衡模型,当促进聚团破碎的力和促进聚团形成的力相等时,计算出一定频率不同声压级下的聚团尺寸,在频率130 Hz、声压120.5 db下,根据模型计算得到的聚团直径为384 mm,而通过最小流化速度计算值为367 mm,二者较接近.  相似文献   

5.
在内径为120mm的半圆柱形声场流化床中,以平均粒径55μm的玻璃珠作为流化介质,考察了声压级和声波频率对玻璃珠在声场流化床中流化特性的影响。结果表明:声波的引入可以显著降低玻璃珠的临界流化速度。声波频率一定时,临界流化速度随声压的增大而减小;声压一定时,临界流化速度在声波频率为80Hz左后时达到最小值,低于或高于此值,声波作用效果均减弱。  相似文献   

6.
以平均粒径150μm的空心微珠作为实验物料代替超细粉聚团,在以高速射流为喷动气的半圆柱形导向管喷流床中,分别利用光纤探针和压力传感器测量环隙区颗粒浓度信号、压力脉动信号,通过统计分析和功率谱分析考察了声场对环隙区流化质量的改善作用。结果表明:低频高强度的声场能有效破碎环隙区上部的气泡,减小气泡尺寸,增加气泡内颗粒浓度,使床层两相结构减弱,颗粒平均浓度增大,浓度波动减小。且声压级越大,作用效果越明显;而声波频率的影响则存在一个最佳值,本实验条件下为70Hz,大于或小于该值,声波的作用效果都会减弱。同时声场能消除环隙区下部沟流,促进流化气均匀分布,使颗粒浓度减小,浓度波动增大,并随声压级增加而逐渐与上部接近,从而使环隙区轴向上的流化状态变得更加均匀,流化质量提高。  相似文献   

7.
在底部直径为120 mm的锥型流化床中,以玻璃珠为流化颗粒,过热蒸汽为流化介质,研究了固体颗粒在过热蒸汽流化床中的流化特性,考察了操作温度和压力对临界流化速度(umf)的影响.结果表明,过热蒸汽流化床的流化行为与热空气相似,临界流化速度(umf)随床层温度的升高而减小,随床内压力的增大而减小;在相同温度条件下,过热蒸汽流化床的临界流化速度比热空气大.  相似文献   

8.
采用内径为56 mm的玻璃管流化床,考察了平均粒径分别为5~10 nm(1#), 0.5 mm(2#)及10 mm(3#)的SiO2超细颗粒在无声场及声场存在下的流化行为. 无声场时,1#和2#颗粒可在较高的气速下形成稳定聚团,单位质量颗粒团间作用力与原生颗粒相比显著下降,因而可实现稳定的聚团流化,3#颗粒因颗粒间粘性力较大,无法实现稳定流化. 40~60 Hz的声场对3种超细颗粒的流化行为均可起到一定的改善作用,在此频率范围外,声场的作用不明显. 提高声压级,可以使1#和2#颗粒团发生一定程度的破碎,聚团尺寸减小,最小流化速度降低. 在实验范围内,添加声场无法使3#颗粒实现稳定流化.  相似文献   

9.
双组分颗粒声场流态化的实验研究   总被引:3,自引:0,他引:3  
在内径为56 mm的玻璃声场流化床中,以5~10 nm未改性和有机改性的SiO2为实验物料主体颗粒,Fe3O4(粒径小于0.053 mm)为客体颗粒,在声压级为90~105 dB时系统考察了声场频率、声场强度和主客体颗粒不同配比关系对超细颗粒流化行为和聚团尺寸的影响。结果表明,当声场频率处于50 Hz,声压级大于100 dB时,声波可以有效地消除节涌、抑制沟流、降低临界流化速度,减小聚团尺寸,显著改善超细颗粒的流化质量。声场频率一定,声场强度越大,颗粒团聚体的直径越小。客体颗粒的添加比例存在一适宜范围。  相似文献   

10.
在内径120 mm的半圆柱型声场导向管喷动流化床中,以平均粒径290 nm的TiO_2颗粒为原料,高速空气射流为喷动气,考察了操作条件、声参数(频率和声压)对纳米颗粒在声场导向管喷流床中的流态化特性的影响。结果表明:声波可以有效抑制沟流,改善环隙流化质量,防止射流旁路,从而促使粉体稳定循环,加快循环速率;同时声波可以显著地降低纳米TiO_2颗粒的最小喷动速度,声波频率一定时,最小喷动速度随声压的增加而减小;声压一定时,最小喷动速度在声波频率为80 Hz时达到最小值,低于或者高于80 Hz,最小喷动速度都会增大。  相似文献   

11.
The pressure fluctuation of the quartz sand and SiO2 particles was investigated using pressure transducer in high temperature fluidized bed with sound assistance. The effects of bed temperature, sound wave frequency, and sound pressure level (SPL) on the pressure fluctuation were examined. It indicates that the minimum fluidization velocity decreases with an increase in sound pressure level at the same sound frequency. At the same SPL and bed temperature, there always exists an optimal frequency range achieving good fluidization quality. As the sound frequency increases, the minimum fluidization velocity decreases firstly and then increases. Based on the statistical analysis of pressure signals, the effect of sound frequency on the fluidization quality at high-temperature fluidized bed was presented. On basis of discrete wavelet transform, an original signal was resolved into five-detailed scale signal. Furthermore, the peak frequency for Scale 3 detail signal represents the bubbling frequency.  相似文献   

12.
The time series of fluid catalytic cracking (FCC) particle concentrations were measured by an optical fiber probe under conditions of different sound pressure levels and sound frequencies in an acoustic bubbling fluidized bed (? 140 mm × 1600 mm). The results show that the minimum fluidization velocity had a minimum value when the sound wave frequency was 150 Hz. Under the same sound frequency, the fluidization velocity decreased as the sound pressure level increased. The particle concentration signals in an acoustic fluidized bed were also analyzed by means of wavelet analysis. On the basis of discrete wavelet transform, an original signal was resolved into five detailed scale signals. By using wavelet energy analysis, it was found that the peak frequency of the scale 3 or 4 detail wavelet signals represents the bubbling frequency and the peak amplitude for the bubble size. The results indicate that the bubbling frequency and bubble size decreased with increasing sound pressure level at a given frequency. In addition they decreased with increasing sound frequency ranging from 50–150 Hz, but further increased with increasing sound frequency ranging from 150–500 Hz.  相似文献   

13.
超细颗粒在声场流化床中的流化特性   总被引:6,自引:0,他引:6  
在内径为130mm的声场流化床中,以原生纳米级SiO2超细颗粒为物料,在声压水平为0~140dB、声波频率为0~500Hz范围内系统地考察了声波对超细颗粒流化特性的影响。结果表明:当声波频率为100~150Hz、声压大于130dB时,声波可以有效地消除节涌、抑制沟流、降低临界流化速度,显著地改善纳米SiO2颗粒的流化质量。在频率一定的情况下,声压越高,超细颗粒的临界流化速度越低,流化质量越好。当频率低于100Hz或高于150Hz时,随着频率的进一步降低或增加,超细颗粒的临界流化速度都增大,甚至又出现节涌和沟流。声波的效果减弱甚至消失。  相似文献   

14.
The effects of sound assistance on fluidization behaviors were systematically investigated in a gas–solid acoustic fluidized bed. A model modified from Syamlal–O'Brien drag model was established. The original solid momentum equation was developed and an acoustic model was also proposed. The radial particle volume fraction, axial root‐mean‐square of bed pressure drop, granular temperature, and particle velocity in gas–solid acoustic fluidized bed were simulated using computational fluid dynamics (CFD) code Fluent 6.2. The results showed that radial particle volume fraction increased using modified drag model compared with that using the original one. Radial particle volume fraction was revealed as a parabolic concentration profile. Axial particle volume fraction decreased with the increasing bed height. The granular temperature increased with increasing sound pressure level. It showed that simulation values using CFD code Fluent 6.2 were in agreement with the experimental data. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

15.
气固搅拌流化床压力脉动的小波分析   总被引:5,自引:4,他引:1       下载免费PDF全文
王嘉骏  张文峰  冯连芳  顾雪萍 《化工学报》2006,57(12):2854-2859
在内径188 mm、静床高400 mm的搅拌流化床中,采用Geldart D类颗粒为实验物料,通过小波分析研究了不同气速和搅拌桨转速下搅拌流化床的压力脉动行为.实验发现,搅拌桨的转动作用促使在普通流化床中不易散式流态化的D类颗粒形成了散式流态化.随着气速的增加,第1尺度的小波能量特征值在某一个气速范围内发生急剧变化,进而提出了将该气速范围的下限和上限分别定义为临界鼓泡速度和充分鼓泡速度的判据.随搅拌转速的增加,散式流态化的气速操作范围线性增加.在鼓泡流态化状态下,气速是流化床气泡行为的主导因素,搅拌桨转速的增加对气泡产生的频率无明显影响但可使气泡的直径变小.  相似文献   

16.
The behaviour of several kinds of group B particles ranging from 100 μm to 600 μm was studied in a sound wave vibrated fluidized bed (SVFB). The fluidized bed consists of a transparent Plexiglas tube that is 54 mm i.d. × 1 m high. A speaker mounted at the top of the bed was supplied by a function generator with square waves and was used to generate the sound as the source of vibration of the fluidized bed. The influence of the particle size, density of particles and sphericity of particles on the minimum fluidization velocity, pressure fluctuations and bubble rise velocity in the SVFB was investigated. The minimum fluidization velocity decreased as the sound energy increased. When the sound energy was strong enough and greater than the critical power, the minimum fluidization velocity would approach the same value regardless of the degree of resonance (DOR) value if the particles were in spherical shape. For non-spherical shape particles the minimum fluidization velocity was the function of the DOR value if the power was greater than the critical power. For the middle particle size range, the standard deviation of pressure fluctuations in an SVFB became lower than the one without the effect of sound in high superficial gas velocity range, but the result was reverse for the low superficial velocity; for the large particle size range, the standard deviation of pressure fluctuations in an SVFB was larger than the one without the effect of sound. The sound could also reduce the bubble rise velocity in an SVFB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号