共查询到20条相似文献,搜索用时 15 毫秒
1.
亚硝化-厌氧氨氧化组合工艺脱氮研究 总被引:7,自引:0,他引:7
以高氨氮模拟废水为研究对象,对影响亚硝化-厌氧氨氧化组合工艺脱氮效果的几个因素(DO、pH、碱度、有机物浓度、NU4^+-N/NO2^-—N值)进行了考察,以期获得组合工艺的最佳运行方式。研究结果表明,在亚硝化温度为23~26℃,HRT=1d,进水NH4^+-N、TN浓度分别为350、420mg/L,ANH4^+-N/ANO2^--N值为0.8~1.33的条件下,组合工艺对NH4^+-N、TN的最高去除率分别为99.9%、90.8%,平均去除率分别为96%、76.1%。组合工艺的脱氮效率严重受限于亚硝化系统出水的NH4^+-N/NO2^--N值及其稳定性。 相似文献
2.
采用SBR反应器,以硝化污泥和厌氧氨氧化(ANAMMOX)颗粒污泥的混合污泥为接种污泥,以有机模拟废水为研究对象,进行了厌氧氨氧化生物脱氮工艺研究。结果表明,在控制温度为25℃,水力停留时间为12 d,pH值为7.2~8.5,进水NH4+-N为220 mg/L左右、NO2--N为138 mg/L左右、COD为294 mg/L的条件下成功启动了SBR反应器。在高氨氮、低有机物浓度的条件下,ANAMMOX菌和异养反硝化菌能够实现共存,且ANAMMOX菌仍能成为优势菌属,AN-AMMOX反应是反应器中的主导反应。镜检发现,优势菌尺寸约为1μm,呈圆形或椭圆形,成簇聚生,表面可观察到明显的漏斗状缺口,具有典型的厌氧氨氧化菌特征。污泥中形成了以厌氧氨氧化球状菌为主、其他杆状菌和丝状菌共存的微生物混培体。 相似文献
3.
《Planning》2022,(1):177-185
采用改进的升流式厌氧污泥床(UASB)反应器,在温度为30℃条件下,逐渐缩短HRT(水力停留时间)由9.6 d到0.9 d,经过160 d运行,成功培养出反硝化厌氧甲烷氧化与厌氧氨氧化耦合颗粒污泥,采用荧光原位杂交(FISH)分析、16S rRNA分析等方法研究颗粒结构和微生物组成特征。结果表明:耦合颗粒污泥的氨氮和亚硝酸盐的脱除速率分别为588.9和523 mg·L~(-1)·d~(-1),反硝化厌氧甲烷氧化活性达95.2 mg·L~(-1)·d~(-1),出水硝酸盐质量浓度小于40 mg·L~(-1),总氮去除率达92.5%;耦合颗粒污泥平均粒径为0.76 mm,与接种厌氧氨氧化颗粒污泥相比增加了1.46倍;反硝化厌氧甲烷氧化微生物主要位于耦合颗粒污泥外层,厌氧氨氧化菌位于耦合颗粒污泥内部;主要的厌氧氨氧化菌为Candidatus Brocadia,主要的反硝化厌氧甲烷氧化细菌为Candidatus Methylomirabilis,反硝化厌氧甲烷氧化古菌为Candidatus Methanoperedens。 相似文献
4.
短程硝化/厌氧氨氧化联合工艺处理含氨废水的研究 总被引:1,自引:1,他引:1
在SBR中接种普通好氧活性污泥,通过控制运行条件来实现短程硝化,同时提高厌氧生物转盘系统中厌氧氨氧化的氮负荷,使之与SBR出水中NO2--N的积累量相匹配,并将二者组合形成短程硝化/厌氧氨氧化自养脱氮工艺.处理含氨废水的试验结果表明:在SBR的进水NH4+-N为150~250 mg/L、温度为(28±2)℃、pH值为7~8、DO<1 mg/L的条件下,可实现稳定的短程硝化,NO2--N积累率达85%以上,NH4+-N负荷达0.129 kgN/(kgVSS·d),AOB和NOB的数量之比为103:1.将短程硝化出水加入NH4+-N后作为厌氧氨氧化反应器的进水,在(40±1)℃下可以达到自养脱氮的目的,对NH4+-N、NO2--N和TN的去除率分别达86%、97%和90%以上,TN容积负荷为0.488 kgN/(m3·d). 相似文献
5.
6.
短程硝化/厌氧氨氧化一步法自养脱氮中试研究 总被引:3,自引:0,他引:3
一步法自养脱氮工艺在高氨氮废水处理中具有运行能耗低、不需外加碳源等优点。利用总容积为50 m3的SBR反应器处理高氨氮废水,成功实现了短程硝化/厌氧氨氧化一步法自养脱氮。反应器对不同氨氮浓度(350~4 300 mg/L)的废水均表现出良好的处理效果,对氨氮与总氮的平均去除率分别达到95%和90%以上。同时,还研究了反应器运行的主要影响因素、污泥粒径分布及微生物群落结构。结果表明,系统内形成了红色的厌氧氨氧化颗粒,且颗粒的比例随运行逐渐增加;而维持合理的溶解氧和氨氮浓度是实现高负荷脱氮的关键因素。 相似文献
7.
8.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水 总被引:1,自引:0,他引:1
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质. 相似文献
9.
10.
11.
废水生物脱氮新工艺研究进展 总被引:1,自引:0,他引:1
对生物脱氮新工艺进行了较全面的综述,分析了影响NO2-N积累的主要因素为游离氨、pH值、温度、溶解氧、污泥龄和有害物质,主要介绍了短程硝化反硝化、厌氧氨氧化和CANON等生物脱氮新工艺的微生物学原理,研究应用现状、发展前景以及存在的问题。 相似文献
12.
为解决污水处理过程中总氮去除难、能耗高的世界性难题,项目团队持续研发厌氧氨氧化相关技术15年,全面充分研究了厌氧氨氧化菌代谢机理、培养条件、反应器控制技术与工程启动策略,构建了一套以厌氧氨氧化技术为核心的污水处理创新技术体系,自主研发实现多项重大技术突破并实现产业化,研究成果达到世界先进水平。所研发的工艺技术已在污泥消化液、垃圾渗滤液、污泥热水解消化液等高氨氮污水处理领域实现产业化,建成了国际上最大的厌氧氨氧化工程和最大的厌氧氨氧化菌菌种基地,获得了良好的经济、环境与社会效益,实现了科研项目落地转化的社会目标与责任。 相似文献
13.
15.
针对光伏行业硅烷塔废水氨氮含量高、COD低的特征,介绍厌氧氨氧化技术用于光伏行业硅烷塔废水处理的工程应用实例。某光伏企业硅烷塔废水处理工程为新建项目,设计规模600 m3/d,出水要求达到GB 30484—2013《电池工业污染物排放标准》的间接排放标准。该工程采用“厌氧氨氧化+A/O”工艺,自调试运行以来,处理效果良好,出水水质稳定,达到排放标准要求。 相似文献
16.
厌氧氨氧化(ANAMMOX)工艺因其能耗低且无需外加有机碳源等特点在废水生物脱氮领域具有广阔的应用前景.但该工艺对环境条件十分敏感,尤其对重金属.废水中存在的重金属对Anammox菌产生抑制制约了该工艺的推广应用.文章对目前所报道的重金属离子对厌氧氨氧化菌产生抑制甚至毒害作用的情况进行了总结,比较了各金属离子对Anammox菌脱氮效能的影响及活性恢复效果. 相似文献
17.
探索高效污水生物脱氮技术一直是污水处理领域的热点问题,而对具有将氨氮直接氧化为硝酸盐氮能力的全程氨氧化菌(Complete ammonia oxidizers, Comammox)的发现重新定义了人们对氮循环的认识。如何将全程氨氧化应用于污水处理厂的生物脱氮可能是未来研究需要重点解决的问题。为此,系统地阐述了Comammox菌的微生物学分类、生化特性和代谢机制,分析了Comammox菌与其他脱氮功能微生物的相互作用,总结了Comammox的影响因素。最后提出了基于Comammox-厌氧氨氧化协同实现城市污水主流脱氮的初步设想,并对Comammox的未来研究方向进行了展望。 相似文献
18.
厌氧氨氧化技术应用于市政污水处理的前景分析 总被引:1,自引:0,他引:1
厌氧氨氧化是一种新型脱氮技术,具有几乎不消耗有机碳源的突出优点,采用常规脱氮技术处理市政污水时,往往面临碳源不足的问题,若将厌氧氨氧化技术应用到市政污水领域,将使得市政污水处理产生革命性的变化。以市政污水为对象,分别从厌氧氨氧化和短程硝化两方面探讨分析了应用厌氧氨氧化技术的可行性。经过分析表明,厌氧氨氧化技术应用于市政污水处理的瓶颈在于如何实现短程硝化,而市政污水进行短程硝化的手段必须结合溶解氧控制,且采用一体式反应器的CANON工艺更有利于短程硝化的实现,但是理论分析表明,通过碱度控制无法实现短程硝化;在解决短程硝化的基础上,厌氧氨氧化技术应用于市政污水基本上不存在障碍,有机物、亚硝酸盐、溶解氧等对于ANAMMOX菌的抑制作用都可找到相应的解决方法。 相似文献
19.
20.
通过逐步增加UASB反应器进水氮负荷[1.06~1.42 kg/(m3·d)]方式,考察了厌氧氨氧化(Anammox)工艺受到高盐度冲击后的恢复及运行特性。结果表明,经过156 d的运行,NH4+-N、NO2--N、TN去除率及总氮去除负荷(NRR)分别达到97.57%、96.40%、83.90%和1.19kg/(m3·d),这主要归功于Anammox污泥的活性得到了有效恢复[TN的比降解速率由0.131mg/(mgVSS·d)提高到0.302 mg/(mgVSS·d)];随着工艺运行效能的恢复,颗粒污泥的颜色由深褐色变为红褐色,平均粒径也随之增大,粒径>1.5 mm的占比最高,达到了68.25%;此外,胞外聚合物(EPS)含量由96.66 mg/g增大至147.98 mg/g,并且PN/PS值由4.86增大至13.34,厌氧氨氧化工艺可恢复到高效运行状态。 相似文献