首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多孔聚合物因具有高比表面积、孔结构可调性、孔隙结构丰富、合成方法多样而引起了广泛关注,在储能领域,可将其炭化后应用在超级电容器的电极材料中。在这项工作中用溶剂热法制备出多孔聚合物(PSC),以PSC为前驱体,一步炭化法制备多孔炭PSC-T。结果表明:多孔炭PSC-T具有石墨化结构,含有大量介孔。其电化学性能优异,在电流密度为1.0A/g时,比电容为190.1F/g,经过5000次的循环充放电后,比电容保留率为90%。  相似文献   

2.
以菱角壳为前驱体,采用KOH化学活化法制备超级电容器用多孔炭,研究了不同碱炭比对多孔炭结构和电化学性能的影响。采用SEM、XRD、Raman、N_2吸脱附测试对多孔炭的微观结构进行表征,并利用循环伏安、恒流充放电、长循环、交流阻抗等方法考察其电容性能。结果表明,碱炭比为4时,多孔炭具有最高的比表面积(2 046.74 m~2/g)和最丰富的孔结构,以TEABF_4/PC为电解液组装成超级电容器,在0.1 A/g电流密度下,其比电容高达126.1 F/g,以0.5 A/g电流密度循环10 000次,其比电容仍保持92.6 F/g,展现出良好的电容性能。  相似文献   

3.
以甲醛(F)和间苯二酚(R)为炭源,赖氨酸为催化剂,采用快速溶胶凝胶法所制含氮多孔炭(RFL)对CO2具有较高的吸附能力;为增加RFL的氮含量,引入适量的三聚氰胺(M),制得的多孔炭(RFLM)含N量增加,比表面积和孔体积也有所增加;在合成体系中进一步引入谷氨酸(G),可使聚合反应速率得到控制,且多孔炭(RFLMG)的织构性质也得到进一步优化。RFLM和RFLMG对CO2的吸附能力较RFL弱,说明多孔炭的含N量与其对CO2的吸附能力没有明确的线性关系,而含氮官能团的存在形式会影响多孔炭对CO2的吸附能力。  相似文献   

4.
以柠檬酸锌为前体,利用碳化过程中产生的ZnO作为模板,制备了具有高比表面积和丰富孔道结构的多孔炭材料,系统研究了碳化温度对所得材料比表面积、孔体积及超级电容器性能的影响。结果表明:随着温度的升高,比表面积增大,孔容增大,多孔炭材料的电容性能也相应提高,在碳化温度为1273K时,所得炭材料(Zn C1273)的比表面积高达1763m2/g,孔容为3. 08cm3/g。利用1. 0mol/L四乙基四氟硼酸铵的乙腈溶液为电解质,所得炭材料作为电极应用于超级电容器,在0. 5~20A/g高电流密度下的容量保持率为93. 2%。  相似文献   

5.
为降低模板法制备多孔炭的成本,使用一种天然沸石矿为模板来制备多孔炭。利用XRD、N2吸附和循环伏安法研究多孔炭的物相组成、孔结构和电化学性能。研究表明,所制备多孔炭的比表面积仅为411m2/g,但富含中大孔,并具有较宽的孔径分布;在1mol/L的H2SO4溶液中,1mV/s的扫描速度下,多孔炭的比容量为185F/g,扫描速度增加到500mV/s,其比容量保持率高达72%,比在相同条件下,比表面积2322m2/g的商业微孔活性炭的容量保持率23%高得多,且保持了良好的扫描曲线。  相似文献   

6.
采用酚醛树脂(PF)为热稳定聚合物, 端环氧基的聚合物(QS)为热不稳定聚合物, 利用聚合物共聚炭化法制备多孔炭。经红外光谱分析及热重分析证实, 在酚醛树脂与QS的共聚固化物中, QS链段上的环氧基与酚醛树脂链段上的酚羟基发生反应生成醚键, QS接枝到酚醛树脂的链段上。BET比表面积、孔结构和电化学性能分析表明: 在共聚固化物PF/QS的炭化过程中, QS的热解逸出能起到造孔作用, 并随着QS用量的增加多孔炭的比表面积先增大后减小。QS加入量为15%的多孔炭具有最大的比表面积609.0 m2/g、总孔容0.28 cm3/g和微孔孔容0.22 cm3/g, 与聚合物共混炭化法相比, 在相同热不稳定聚合物加入量条件下, 多孔炭的比表面积和孔容都有所提高。该多孔炭电极在30wt% KOH电解液中的比电容达177.5 F/g, 具有良好的电容特性。  相似文献   

7.
以苯酚、甲醛为原料,利用水热合成法制备酚醛泡沫前驱体,经炭化和KOH活化后制备具有高比表面积的多孔炭PAFc。采用X射线衍射、扫描电镜和N2吸附-脱附等方法对多孔炭进行表征。结果表明:当炭化温度为800℃、活化比例为1∶2时制备的多孔炭含有丰富的孔结构和高比表面积(1692.24m2/g)。此外,多孔炭也表现出优异的电化学性能,电流密度为1A/g时多孔炭的比电容达255.6F/g,循环5000次后,电容保持率为97.3%。  相似文献   

8.
多孔炭材料具有优良的电导率、高的比表面积以及优异的电化学稳定性,被广泛用于能量存储和转换领域.模板法被认为是制备具有良好孔结构和孔径分布炭材料最成熟的方法之一.本文归纳总结了模板法,包括硬模板(镁基、硅基、锌基、钙基)、软模板(常规软模板、离子液体、低共熔溶剂)、自模板(生物质、金属有机框架)制备超级电容器用分级多孔炭...  相似文献   

9.
多孔炭电极的表面改性与优化是实现超级电容器优异性能的关键。本文以煤化学工业的固体副产物为碳源,利用二维层状双氢氧化物(MgAl-LDH)的刚性约束作用耦合KOH活化工艺成功制备了二维富氧多孔炭纳米材料(OPCN)。系统研究了炭化温度对OPCN样品微观结构和表面特性的影响,通过SEM、TEM、氮气吸脱附测试以及元素分析等表征手段对炭材料的结构/组成和表面特性进行分析表明,经700°C炭化获得的炭材料样品(OPCN-700)具有较高的氧质量分数(24.4%)和大的比表面积(2 388 m2 g-1),并表现出良好的润湿性。同时,OPCN-700样品丰富的微孔和二维纳米片结构为电解质离子提供了有效的储存和传输途径。作为超级电容器的电极材料,在电流密度为0.5 A g-1时,其比电容高达382 F g-1,并呈现出优异的倍率性能和循环稳定性。该技术策略为富氧原子掺杂二维多孔炭材料的可控制备与水系储能器件的设计构建提供了新思路。  相似文献   

10.
利用水热浸渍法,以柚子皮为前驱体,在KOH活化作用下制备得到分级多孔炭电极(HPC)。通过扫描电子显微镜和X射线衍射仪表征了材料的形貌和结构。采用循环伏安、恒定电流充放电和交流阻抗测试了材料的电化学性能。结果表明:材料呈现出由大孔、微孔和中孔组成的多孔结构,当前驱体和KOH质量比在1∶9时,获得的HPC材料(HPC-9)的电化学性能最好。电化学测试表明,在5mV/s下,HPC-9质量比电容高达306F/g,是未活化样品的23.5倍。在10000次循环下HPC-9容量无衰减。因此,这种利用生物质制备的分级多孔炭具有优异的电容性能,可望有良好的应用前景。  相似文献   

11.
在保持快速充/放电特性的同时,提高超级电容器的能量密度将极大地扩展其应用领域.本文以野生箩藦壳为碳源、ZnCl2为活化剂、NH4Cl)为氮源,通过一步法制备了氮掺杂层状多孔炭(NPCM)作为高性能超级电容器电极材料.该NPCM材料具有高的电导率、较高的离子可接触比表面积和快速的离子传输通道,显示出高质量比容量(457 ...  相似文献   

12.
作为锂离子电池和超级电容器的结合,锂离子电容器由于兼备电池和电容器的优点而受到了广泛关注。然而因其正极双电层电容行为的储能机理,锂离子电容器的能量特性受到了较大的限制。因此,为了从根本上增强锂离子电容器正极材料性能,本研究提出了双离子电容器的储能机理。以柠檬酸钾/镁/铁为原料,合成了兼备石墨质结构与层次化多孔结构的石墨质多孔炭,并以其为正极材料,实现了兼具锂离子电容器正极离子吸附行为与双离子电池正极阴离子插层行为的双离子电容储能。由于石墨质多孔炭结构中石墨质结构在高电位下由阴离子插层反应贡献的额外平台容量以及对于材料导电性的增强,石墨质多孔炭正极材料的能量特性明显超过多孔炭及人造石墨正极,实现了从储能机理的层面的器件性能增强。  相似文献   

13.
在最近的几十年中,超级电容器(SC)已在电化学能量存储设备中获得了更为重要的地位.SC为使用寿命长的能量存储设备提供了可观的功率密度和令人满意的能量密度,适用于多种应用.因此,这些装置的进一步发展依赖于提供合适,低成本,环境友好和丰富的材料作为SC的电极活性材料.在用于SC的电极材料中,活性炭表现出优异的性能.它们具有...  相似文献   

14.
以胡萝卜为炭源,采用KOH对胡萝卜炭进行活化,制备出具有高比电容的分级多孔炭材料。利用SEM、X射线衍射分析、低温氮气吸脱附等手段对制备的材料进行形貌及结构分析,结果表明,不同碱炭比会造成炭材料不同程度的结构变化,在碱炭比为2∶1时,所制备的炭材料孔隙结构分布最佳,比表面积高达3 111.45 m2/g,总孔容为1.51 m3/g。循环伏安(CV)、恒流充放电(GCD)等电化学测试表明,在最佳活化条件下制备的胡萝卜基多孔炭材料制成的电极在6 mol/L KOH电解液、0.5 A/g电流密度条件下比电容为486 F/g,表明材料具有良好的电容性能;当电流密度提升20倍时,电容量保留为原来的86%,表明材料具有良好的倍率性能;10 A/g电流密度下经8 000次循环后,电容保持率为97.3%,表明材料具有良好的稳定性。胡萝卜基多孔炭材料制成的电极片所组装的水系超级电容器器件能量密度可达14.67 Wh/kg,功率密度为1 000 W/kg。  相似文献   

15.
概述了表面改性和本体富氮两种负载氮原子的方法及其优缺点,总结了经高温处理后炭材料表面含氮官能团(N-6、N-5、N-Q、N-X)的转化机制:氮原子最终以化学性质稳定的六圆环的形式出现(如N-6、N-Q、N-X),温度高于600℃时,N-5(Pyrrolic-N)通过扩环作用转变为N-6、N-Q、N-X。最后从法拉第氧化还原反应(产生赝电容)和电极的湿润性两方面归纳了表面含氮官能团对超级电容器电化学性能的影响,并展望了今后的研究方向。  相似文献   

16.
智新  彭同江  孙红娟  汪建德 《材料导报》2017,31(14):16-21, 34
以制备的氧化石墨凝胶和苯胺-吡咯共聚物为原料,将二者进行混合超声分散,再以其混合分散液为前驱体,采用一步水热法制得三维石墨烯/苯胺-吡咯共聚复合物(3DAP)。利用X射线衍射(XRD)、拉曼光谱(Raman)、傅里叶变换红外(FT-IR)光谱、扫描电镜(SEM)、透射电镜(TEM)和电化学测试等研究了复合物的结构、形貌及电化学性能。结果表明:3DAP拥有丰富的三维多孔网状结构,并且颗粒状的苯胺-吡咯共聚物能够均匀地分布于孔隙间;作为电极材料,该复合物在0.5A·g~(-1)电流密度下比电容可达628.5F·g~(-1),即使在大电流密度(20A·g~(-1))条件下仍可高达384F·g~(-1),且在1A·g~(-1)电流密度下经过1 000次的充放电循环后比容量保持率高达86.1%,表现出良好的倍率特性和循环稳定性,其超级电容性能远优于单纯的石墨烯以及苯胺-吡咯共聚物。  相似文献   

17.
在较低氢氧化钾用量的条件下,采用一步微波辅助KOH活化法由煤沥青成功制备出多孔炭材料。在KOH/沥青质量比为2∶1,采用30 min微波辅助KOH活化所得多孔炭(PC2-M)的比表面积达1 786 m2/g。在KOH、K2SO4、Na2SO4、Li2SO4水性电解液及四乙基四氟化硼酸铵盐/碳酸丙烯酯有机电解液中,研究了PC2-M电极的电化学性能。在6 mol/L KOH水性电解液中,在0.1 A/g的电流密度下,多孔炭电极的比容达267 F/g;在0.5 mol/L K2SO4中性电解液中,多孔炭电容器的能量密度高达12.0 Wh/kg,对应的功率密度为1 318 W/kg。因此,一步微波辅助氢氧化钾活化煤沥青是一种简单、高效且低能耗的制备超级电容器用高性能多孔炭的方法。  相似文献   

18.
李闽  刘敏  刘康 《材料工程》2019,47(9):123-131
制备具有多电子传输与多孔有序的结构电极是电化学储能技术创新发展的两个重要策略。本工作采用一种界面电化学聚合新法合成聚吡咯-聚3,4-乙撑二氧噻吩(PPy-PEDOT)共聚物薄膜材料。采用FTIR,XPS,EDX,SEM与电化学充放电测试对PPy-PEDOT共聚物膜的化学组成、分布、微观形貌及电容性能进行表征与测试。结果表明:PPy-PEDOT共聚物膜由PPy与PEDOT按一定比例组成,且分布均匀;SEM测试表明共聚物膜具有正反两面各异的特殊形貌,且有机相一侧呈三维网状多孔层状结构。电化学充放电测试表明,PPy-PEDOT共聚物膜表现出优异的超级电容器电极材料的特性,具有较高的比电容,较快的充放电速率与较好的循环稳定性。PPy与PEDOT共聚后实现二者性能互补,提高了共聚物膜的导电性,电荷迁移速率及稳定性,同时三维网状多孔层状结构也有助于充放电过程中电子离子的迁移,使得共聚物膜的储能性能显著提高。  相似文献   

19.
分等级孔道含氮多孔炭作超级电容器电极材料的研究   总被引:1,自引:0,他引:1  
以间苯二酚和甲醛为前驱体,分别采用赖氨酸或氨水共聚体系制备了两种具有分等级孔道结构的块体含氮多孔炭.采用氮气吸附/脱附,透射电子显微镜,扫描电子显微镜及元素分析技术分别对其物理和化学性质进行了表征.在三电极体系和两电极体系下,研究了其作为超级电容器电极材料的电化学行为.结果表明:这两种氮掺杂块体多孔炭具有相似的孔道结构,但电容行为明显不同.其中赖氨酸体系制备的多孔炭氮含量比较高,表现出良好的电化学行为,其质量比电容可达199F·g-1,经过1000充放电循环比电容仅有1.6%的损失.  相似文献   

20.
以富含氨基酸的明胶为前驱体、二氧化硅和冰为双模板,通过冷冻干燥法制备得到了高氮掺杂的大孔容多孔炭材料(GPC),将其作为正极硫载体.通过调整模板的配比,调控了GPC材料的孔道结构和孔容.多硫化锂吸附实验表明,氮掺杂的GPC材料对多硫化锂具有较强的化学吸附能力.电化学测试结果表明,氮掺杂有利于加快硫的还原反应动力学,从而...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号