首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
水热法制备高定向掺铝氧化锌纳米棒阵列   总被引:2,自引:0,他引:2  
为了制备高定向光电性能优异的掺铝氧化锌(ZAO)纳米棒阵列,采用溶胶-凝胶法在玻璃基片上制备掺铝氧化锌薄膜,以ZAO薄膜为种子层,通过控制掺铝量、稳定荆等工艺参数,采用水热法制备出了高定向ZAO纳米棒阵列.实验表明,铝掺杂量为2%,直径在50nm左右的ZAO纳米棒阵列薄膜具有最好的光致发光性能,表面活性剂可以促进ZAO纳米结构的棒状生长,形成高定向ZAO纳米棒阵列.  相似文献   

2.
在硝酸锌/(NH_2)_6N_4(HMTA)溶液体系中加入浓氨水及氯化铜,采用水热法制备Cu掺杂的ZnO薄膜。研究发现,氨水和Cu~(2+)离子均可抑制ZnO纳米棒的横向生长,促进纳米棒沿c轴取向生长,增加长径比,但并未发现Cu进入ZnO晶格中。ZnO水热阵列膜的形貌可以通过同时掺杂Cu2+和加入浓氨水来改变。Cu~(2+)离子和氨水共掺杂容易导致ZnO纳米棒的弯曲及纳米棒端头的聚集,形成由纳米棒团簇组成的星星状薄膜表面。PL谱显示,该结构具有较大的氧空位缺陷浓度及比表面积,并具有一定的场发射特性,场增强因子β为5990。  相似文献   

3.
采用NH4F-DMSO-甘油-H2O溶液体系的电化学阳极氧化法,经高温热处理后,在金属钛基板上制备了有序的Ti O2纳米管阵列薄膜。通过计时安培法、循环伏安曲线、光照开路电位谱和瞬态光电流谱技术对纳米管阵列电极的电致变色及光电化学特性进行了研究。结果表明,Ti O2纳米管为混晶组成,阵列薄膜具有大比表面积和高长径比。纳米管阵列电极具有稳定的阴极电致变色效应,快速的着色/褪色反应时间。与Ti O2纳米多孔膜电极相比,Ti O2纳米管阵列电极的光电流及光照开路电压都显著增加。  相似文献   

4.
通过磁控溅射法在Ti O2薄膜上生长Cu-Cu2O复合层,从而制备新型Cu-Cu2O/Ti O2双层纳米复合薄膜。并采用X射线衍射(XRD),扫描电子显微镜(SEM),荧光光谱(PL),X射线光电子能谱(XPS)和紫外可见漫反射光谱(DRS)等方法对膜的结构,形态和光学性能进行了研究。X射线衍射谱表明,Cu-Cu2O混合物层和Cu2O层都没有影响Ti O2的结晶相。XPS结果表明,Cu的存在抑制了Cu2O表面在空气中的氧化。SEM分析表明,结晶良好的Cu-Cu2O混合物微小纳米颗粒均匀分散于Ti O2表面。由于紫外可见漫反射光谱的Cu-Cu2O/Ti O2复合薄膜的吸收边发生红移。PL光谱证实了在Cu的存在下,激发电子和空穴的复合率降低。光催化实验表明,与纯Cu2O/Ti O2相比,所制备的Cu-Cu2O/Ti O2-8显示出更高的光生载流子效率,其光催化性能也显著提高。此外,还对Cu-Cu2O/Ti O2-8光催化活性增强的原因进行了讨论。  相似文献   

5.
纳米团簇强化型铁素体钢设计中空位组元的作用   总被引:1,自引:0,他引:1  
高温下可稳定存在的纳米团簇由于具有科学研究意义及潜在应用价值,已引起了研究者的强烈兴趣.利用原子探针技术在温度接近1400℃(0.92Tm)的铁基合金中观察到了高稳定的纳米团簇,从而打破了人造纳米结构材料高温不稳定性约束.在一种空位作为关键合金组元,同时(Ti Y)/O比与稳定的TiO2和Y2Ti2O7比率不同的高缺陷新材料中,观察到直径约4nm的富氧、钛和钇纳米团簇.在钛和钇存在的条件下,空位在提高氧溶解度和氧结合能方面具有不可替代的作用,因而导致共格纳米团簇的稳定性.原子探针成像特征和理论预测表明空位可首次被作为一种纳米级组分来设计具有优良高温性能的材料.  相似文献   

6.
通过磁控溅射方法制备了一种新颖的纳米Cu2O/Ag/Ti O2三层复合薄膜。用X射线衍射(XRD)仪、扫描电子显微镜(SEM)、紫外可见分光光谱仪(Uv-vis)和荧光光谱仪(FLO)对薄膜的晶体结构、表面形貌、光学性能及Ag金属中间层的存在对复合薄膜的影响进行了分析。此外,对薄膜光催化性能的研究表明,插入Ag层的纳米Cu2O/Ag/Ti O2三层复合薄膜显示出远高于Cu2O/Ti O2双层复合薄膜的可见光催化活性。催化性能的提高归因于Ag金属中间层的存在,提高了三层复合薄膜的可见光吸收强度,增加了表面积,促进了激发电子的转移及光生电子和空穴的分离。  相似文献   

7.
通过低温水热法,在图案化的p型硅衬底上合成氧化锌(ZnO)纳米棒阵列薄膜,制备出具有p-Si/n-ZnO纳米棒(NR)阵列结构的异质结太阳能电池(HSCs)。通过直流磁控溅射技术,分别在前后面板溅射沉积ITO和Al膜接触电极层。研究ZnO籽晶层的退火温度、ZnO纳米棒阵列水热合成的时间等因素对ZnO纳米棒阵列的晶体结构、表面形貌和光学性能的影响。p-Si/n-ZnO纳米棒阵列HSCs的最佳短路电流密度和总能量转换效率分别为11.475 mA·cm-2和2.0%。相比p-Si/n-ZnO薄膜HSCs,p-Si/n-ZnO纳米棒阵列HSCs的光伏性能得到了有效提高。  相似文献   

8.
采用微波等离子化学气相沉积系统(MPCVD)在镀钛的单晶硅衬底上制备纳米金刚石薄膜。反应气体为CH4和H2,其流量比为1∶1,微波功率为1 800 W,反应气压为10 kPa。利用扫描电镜(SEM)和Raman光谱分析薄膜的形貌和碳结构。结果表明,纳米金刚石薄膜呈现片状的组织特征,其生长过程为:生长初期在单晶硅衬底上形成由纳米碳颗粒组成的球状碳团簇;随着沉积时间的增加,碳团簇逐渐增大,纳米碳颗粒定向排列或自组装,最终形成片状纳米金刚石膜。  相似文献   

9.
目的研究Ti AlN/CrN多层膜及Ti AlN、Cr N单一膜层的微观组织和电化学性能区别,分析不同结构薄膜材料的耐腐蚀性影响因素。基于电化学参数、组织结构和腐蚀形貌特征,为开发新型腐蚀性薄膜提供理论依据。方法采用多弧离子镀方法,在316不锈钢基底上先沉积150 nm Cr薄膜作为过渡层,然后交替沉积Cr N薄膜和Ti AlN薄膜,制备单层厚度为10 nm的Ti AlN/CrN多层膜。作为对比,制备单一Ti AlN、CrN薄膜。通过SEM、XRD表征薄膜断面形貌、组织结构,并分析耐蚀机理,结合极化曲线和阻抗谱对三种涂层进行电化学性能分析,最后对涂层进行浸泡腐蚀试验。结果 Ti Al N/Cr N纳米多层膜为面心立方结构,呈现共格外延生长,且呈(200)择优取向。纳米多层膜的动电位极化曲线测量结果与不锈钢基体和单层薄膜相比,其腐蚀电位正移为-0.36 V,腐蚀电流密度降低为0.501μA/cm~2,极化电阻为120 kΩ·cm~2。阻抗谱试验结果表明,相比较于单层膜和基体,Ti Al N/Cr N多层膜的CPE值最低,为29.83×10~(-6)Ω~(-1)·cm~(-2)·sn,n值为0.922,电阻为1.50×1~06Ω·cm~2。腐蚀形貌分析可得出,多层薄膜腐蚀后表面形貌与沉积态涂层形貌最为接近,认为其具有较高的耐腐蚀性。结论纳米层状结构改变了单一薄膜的原始生长模式,抑制了粗大柱状晶的生长,减小了薄膜的固有缺陷、晶粒尺寸,对薄膜的耐蚀性有正面积极的作用。  相似文献   

10.
为改善TiO_2纳米管阵列结构有序性和形貌完整性,以NH4F-丙三醇-水溶液为电解液,采用一次阳极氧化法和二次阳极氧化法在Ti片表面制备TiO_2纳米管阵列,借助扫描电子显微镜和原子力显微镜,研究一次阳极氧化电压、二次阳极氧化法制备过程中阳极氧化电压和一次阳极氧化时间以及退火温度对TiO_2纳米管阵列显微形貌的影响。结果表明,采用一次阳极氧化法在5~25 V电压下阳极氧化Ti片120 min后均可制得有序排列的TiO_2纳米管阵列,纳米管外侧面具有"竹节状"结构特征,纳米管平均管径和管间距随氧化电压升高而增大;一次阳极氧化法在20 V/120 min下制得的TiO_2纳米管阵列相对较优,其表面平整度高。在相同氧化电压下采用二次阳极氧化法制备TiO_2纳米管阵列不能有效改善阵列的有序程度和表面平整度。600℃退火会促进TiO_2纳米管层/钛金属界面处的热氧化物层生长。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号