首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ICR mice were immunized with HTLV-I carrier T lymphocytes (MT-2 cell line) and then inoculated intracerebrally with these cells. After non-specific traumatic hemorrhage, perivascular cell infiltration was noted diffusely throughout the brain on day 2 and lasted for over 2 weeks. HTLV-I antigens were detected in both sides of the cerebral hemisphere by Western blotting analysis. Tissue damage consisting of demyelination, axonal degeneration, and astrogliosis was observed most heavily on days 10 and 14. Non-immunized mice inoculated with the cells showed only transient hemorrhage. In cases using the HTLV-I free T-cell line (MOLT-4) inflammatory cell infiltration and tissue damage was much less conspicuous and disappeared after day 10. These experiments support the hypothesis that HAM/TSP is a bystander disease initiated and progresses via HTLV-I-infected T-cell invasion into the spinal cord of a patient who has been infected and sensitized to the virus.  相似文献   

2.
The circalunidian hypothesis that tidal rhythms in coastal animals are controlled by two lunar-day (c.24.8 h) oscillators coupled in antiphase is challenged. Rhythmic locomotor activity patterns of the shore crab Carcinus maenas, and probably of some other species too, are more economically explained by interacting circadian (c.24 h) and true circatidal (c.12.4 h) physiological oscillators. A testable hypothesis is proposed that combines a circadian promotor and a circatidal inhibitor of locomotor activity.  相似文献   

3.
In larvae of the amphibian, Xenopus laevis, spinal neurons which are active during fictive swimming also display tetrodotoxin-resistant membrane potential oscillations following the coactivation of N-methyl-DL-aspartate (NMDA) and 5-hydroxytryptamine (serotonin or 5-HT) receptors (Scrymgeour-Wedderburn et al., 1997; Eur. J. Neurosci., 9, 1473-1482). The oscillations are slow (approximately 0.5 Hz) compared with swimming (approximately 7-35 Hz) raising doubt over their contribution to the cycle by cycle depolarizations occurring during swimming. We investigated an alternative: that the intrinsic oscillations modulate swimming activity over many consecutive cycles. Bath application of NMDA induced continuous fictive swimming that differed between embryonic and larval preparations. In 81% of larval preparations (n = 36), there was a slow (approximately every 2 s) rhythmic modulation of ventral root activity in which burst durations and intensities increased as cycle periods decreased. This pattern of activity was enhanced rather than abolished following blockade of glycine and gamma-aminobutyric acid (GABA) A receptors and presumably therefore resulted from a periodic increase in the excitation of motor neurons. To determine whether this slow rhythm resulted from intrinsic, 5-HT-dependent membrane potential oscillations, larvae were spinalized to prevent the release of 5-HT from brainstem raphe neurons. The resulting pattern of NMDA-induced activity lacked any slow modulation. The slow modulation could also be enhanced by the bath application of a 5-HT receptor agonist (5-carboxamidotryptamine) and abolished either by the addition of an antagonist (pindobind-5-HT1A) or by removal of magnesium ions, providing more direct evidence for a contribution of intrinsic oscillations. Thus, the 5-HT-dependent intrinsic oscillations modulate NMDA-induced swimming activity over several consecutive cycles.  相似文献   

4.
Melatonin has been suggested as a physiological antagonist of calmodulin. In this work, we have characterized melatonin binding sites in Xenopus laevis oocyte membranes. Binding of [125I]melatonin by X. laevis oocyte membranes fulfills all criteria for binding to a receptor site. Binding was dependent on time, temperature, and membrane concentration and was stable, reversible, saturable, and specific. The binding site was also pharmacologically characterized. Stoichiometric studies showed a high-affinity binding site with a Kd of 1.18 nM. These data are in close agreement with data obtained from kinetic studies (Kd=0.12 nM). In competition studies, we observed a low-affinity binding site (Kd=63.41 microM). Moreover, the binding site was characterized as calmodulin. Thus, binding was dependent on calcium and blocked by anti-CaM antibodies in a concentration-dependent manner. Calmodulin inhibitor chlorpromazine also inhibited binding of the tracer. From these results, it is suggested that membrane-bound calmodulin acts as a melatonin binding site in Xenopus laevis oocytes, where it might couple cellular activities to rhythmic circulating levels of melatonin. This hypothesis correlates with the previous findings describing melatonin as a physiological antagonist of calmodulin.  相似文献   

5.
Pentraxins are a family of acute phase reactants. Two family members, C-reactive protein (CRP) and serum amyloid P component (SAP), are known in a range of mammalian species. CRP and SAP are both about 200 residues long, and arose from a gene duplication event, apparently before the divergence of the mammalian orders. To elucidate the origins of mammalian pentraxins, we have searched for pentraxin-coding genes in the amphibian Xenopus laevis. We have identified a gene determining a protein (XL-PXN1) which is about twice the size expected: the XL-PXN1 gene appears to be a fusion between regions encoding an amino-terminal peptide of unknown function and a carboxy-terminal pentraxin. The pentraxin domain is more divergent from CRP and SAP than they are from each other: it provides an outgroup for analysis of the evolution of mammalian pentraxins and confirms that putative CRP and SAP proteins partly characterized in non-vertebrate species cannot be true homologues of the mammalian proteins.  相似文献   

6.
A procedure is described for the isolation and culture of large numbers of follicle cell-free Xenopus laevis oocytes in all stages of development. The isolation procedure involves the incubation of pieces of ovary in a calcium-free solution OR2 containing 0.2% collagenase. A defined nutrient medium for the maintenace of the oocytes in vitro is presented. It is shown that this medium, referred to as DNOM, can maintain certain morpological and functional characteristics of oocytes for periods up to 3 weeks.  相似文献   

7.
Neurofilaments are an important structural component of the axonal cytoskeleton and are made of neuronal intermediate filament (nIF) proteins. During axonal development, neurofilaments undergo progressive changes in molecular composition. In mammals, for example, highly phosphorylated forms of the middle- and high-molecular-weight neurofilament proteins (NF-M and NF-H, respectively) are characteristic of mature axons, whereas nIF proteins such as alpha-internexin are typical of young axons. Such changes have been proposed to help growing axons accommodate varying demands for plasticity and stability by modulating the structure of the axonal cytoskeleton. Xefiltin is a recently discovered nIF protein of the frog Xenopus laevis, whose nervous system has a large capacity for regeneration and plasticity. By amino acid identity, xefiltin is closely related to two other nIF proteins, alpha-internexin and gefiltin. alpha-Internexin is found principally in embryonic axons of the mammalian brain, and gefiltin is expressed primarily in goldfish retinal ganglion cells and has been associated with the ability of the goldfish optic nerve to regenerate. Like gefiltin in goldfish, xefiltin in Xenopus is the most abundantly expressed nIF protein of mature retinal ganglion cells. In the present study, we used immunocytochemistry to study the distribution of xefiltin during optic nerve development and regeneration. During development, xefiltin was found in optic axons at stage 35/36, before they reach the tectum at stage 37/38. Similarly, after an orbital crush injury, xefiltin first reemerged in optic axons after the front of regeneration reached the optic chiasm, but before it reached the tectum. Thus, during both development and regeneration, xefiltin was present within actively growing optic axons. In addition, aberrantly projecting retinoretinal axons expressed less xefiltin than those entering the optic tract, suggesting that xefiltin expression is influenced by interactions between regenerating axons and cells encountered along the visual pathway. These results support the idea that changes in xefiltin expression, along with those of other nIF proteins, modulate the structure and stability of actively growing optic axons and that this stability is under the control of the pathway which growing axons follow.  相似文献   

8.
9.
Three types of ribosomal preparations from Xenopus laevis eggs and embryos were tested in a cell-free system to study possible translational regulation of protein synthesis as mediated by the ribosome during early amphibian development: type 1, a crude high-speed sediment, mainly containing monoribosomes completely dissociable by 0.5 M KC1; type II, ribosomes washed with 0.5 M KC1; and type III, ribosomes treated with puromycin - 0.5 M KC1. All three types showed an active response to the addition of poly[U]. Type III was found to be the most active: levels of incorporation of 30 phenylalanine residues/ribosome were reached. In all three cases ribosomes prepared from unfertilized eggs were 30-40% less active in vitro than those from cleavage and gastrula stages.  相似文献   

10.
We describe a plasmid, pXen, designed for the optimized expression of proteins fused to glutathione-S-transferase (GST) in Xenopus laevis oocytes and embryos. The Xenopus model system permits the biochemical analysis of signaling pathways and analysis of embryo phenotype in response to manipulation of proto-oncogene expression. pXen is a modified pSP64T vector which contains an SP6 RNA polymerase promoter followed by the translational initiation sequence of Xenopus beta-globin and the glutathione binding domain of GST. The Xenopus 3' beta-globin untranslated region and polyadenylation site immediately follow the multiple cloning site to permit the efficient translation of in vitro transcribed RNA in oocytes and embryos. The utility of pXen is demonstrated by cloning the catalytic domain of the serine/threonine kinase proto-oncogene Raf-1 into this vector and injecting the corresponding in vitro transcribed RNA into oocytes. Catalytically active GST-vRaf fusion protein was expressed in the injected oocytes and induced oocyte maturation. Moreover, the GST-vRaf fusion protein could be readily purified from Xenopus extracts using glutathione Sepharose. We demonstrate that the Raf-1 catalytic domain retains activity when fused with the N-terminal GST moiety and is subject to negative regulation by the cyclic AMP-dependent protein kinase (PKA). The pXen vector will be useful for an in vivo analysis of the physiological role and regulation of a wide variety of signaling molecules when expressed in Xenopus oocytes and embryos.  相似文献   

11.
The purpose of this research was to further investigate the information processing model suggested by Benjamin, McKeachie, Lin, and Holinger (1981) in explaining the poor academic performance of highly test-anxious students. Whereas previous studies pointing to deficits in the organization stage of processing mainly relied on self-reports, the first study of this research used a technique that enabled us to measure objectively the organization of course material by students in a nonevaluative situation. Results indicated that highly test-anxious students showed a disadvantage in organization of course material, in comparison with other students. In the second study, we investigated whether types of highly test-anxious students can be differentiated by their information processing skills. The first type includes those with good study habits who do not have problems in encoding and organizing the information but, rather, have a major problem in retrieval for a test. The second type includes those with poor study habits who have problems in all stages of processing. Such a distinction was supported by results comparing performance of these types of highly test-anxious students in an evaluative and a nonevaluative situation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
We used a peptide antibody to a conserved sequence in the motor domain of kinesins to screen a Xenopus ovary cDNA expression library. Among the clones isolated were two that encoded a protein we named XCTK2 for Xenopus COOH-terminal kinesin 2. XCTK2 contains an NH2-terminal globular domain, a central alpha-helical stalk, and a COOH-terminal motor domain. XCTK2 is similar to CTKs in other organisms and is most homologous to CHO2. Antibodies raised against XCTK2 recognize a 75-kD protein in Xenopus egg extracts that cosediments with microtubules. In Xenopus tissue culture cells, the anti-XCTK2 antibodies stain mitotic spindles as well as a subset of interphase nuclei. To probe the function of XCTK2, we have used an in vitro assay for spindle assembly in Xenopus egg extracts. Addition of antibodies to cytostatic factor-arrested extracts causes a 70% reduction in the percentage of bipolar spindles formed. XCTK2 is not required for maintenance of bipolar spindles, as antibody addition to preformed spindles has no effect. To further evaluate the function of XCTK2, we expressed XCTK2 in insect Sf-9 cells using the baculovirus expression system. When purified (recombinant XCTK2 is added to Xenopus egg extracts at a fivefold excess over endogenous levels) there is a stimulation in both the rate and extent of bipolar spindle formation. XCTK2 exists in a large complex in extracts and can be coimmunoprecipitated with two other proteins from extracts. XCTK2 likely plays an important role in the establishment and structural integrity of mitotic spindles.  相似文献   

13.
14.
Helicobacter pylori persists in the human stomach where it may encounter a variety of DNA-damaging conditions, including gastric acidity. To determine whether the nucleotide excision repair (NER) pathway contributes to the repair of acid-induced DNA damage, we have cloned the putative H. pylori NER gene, uvrB. Degenerate oligonucleotide primers based on conserved amino acid residues of bacterial UvrB proteins were used in PCR with genomic DNA from H. pylori strain 84-183, and the 1.3-kb PCR product from this reaction was used as a probe to clone uvrB from an H. pylori genomic library. This plasmid clone had a 5.5-kb insert containing a 2.0-kb ORF whose predicted product (658 amino acids; 75.9 kDa) exhibited 69.5% similarity to E. coli UvrB. We constructed an isogenic H. pylori uvrB mutant by inserting a kanamycin-resistance cassette into uvrB and verified its proper placement by Southern hybridization. As with uvrB mutants of other bacteria, the H. pylori uvrB mutant showed a greatly increased sensitivity to the DNA-damaging agents methylmethane sulfonate and ultraviolet radiation. The uvrB mutant also was significantly more sensitive than the wild-type strain to killing by low pH, suggesting that the H. pylori nucleotide excision repair (NER) pathway is involved in the repair of acid-induced DNA damage.  相似文献   

15.
The neurotransmitter gamma-aminobutyric acid (GABA) exerts a tonic inhibitory influence on proopiomelanocortin (POMC) neurons in the hypothalamus as well as on the melanotrope cells of the intermediate lobe (IL) of the pituitary gland. Moreover, the activation of the GABAA receptor complex by different ligands has been shown to exert a negative influence on the POMC gene expression at the hypothalamic level. In order to elucidate the in vivo regulation of the POMC mRNA levels in the intermediate lobe of the pituitary by endogenous ligands of the GABAA receptor complex, we have studied the effect of intravenous (i.v.) and intracerebroventricular (i.c.v) injections of octadecaneuropeptide (ODN), a peptide derived from diazepam-binding inhibitor (DBI). The possible involvement of neurosteroids in the action of ODN on melanotropic cells was evaluated following inhibition of two enzymes involved in the biosynthesis of neurosteroids known as activators of G3BAA receptor complex: trilostane, an inhibitor of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD), and MK-906, an inhibitor of 5 alpha-reductase. The i.v. injection of ODN produced a dose-dependent inhibition of POMC gene expression in the IL. The i.c.v. injection of ODN also depressed POMC mRNA. These effects were completely reversed by the concomitant administration of the GABAA antagonist picrotoxin. Similar results were obtained in POMC neurons in the arcuate nucleus (AN) of the hypothalamus. Trilostane administration induced an increase in POMC mRNA and also prevented the inhibitory influence of ODN. The neurosteroid pregnenolone-sulfate, a negative modulator of the GABAA receptor, also stimulated POMC gene expression. On the other hand, MK-906 produced a decrease in mRNA levels and could not reverse the effect of ODN. The results indicate that activation of the GABAA receptor complex by the endogenous benzodiazepine receptor ligand ODN can induce a negative regulation of POMC gene expression in the IL of the pituitary and neurons in the AN. The present results do not provide clear evidence that neurosteroids are involved in the action of ODN on POMC gene expression in the IL.  相似文献   

16.
17.
The nonselective human corticotropin-releasing factor receptor 1 (hCRF-R1) and the ligand-selective Xenopus CRF-R1 (xCRF-R1) were compared. To understand the interactions of sauvagine and ovine CRF, both high-affinity ligands for hCRF-R1 but surprisingly weak ligands for xCRF-R1, chimeric receptors of hCRF-R1 and xCRF-R1 followed by double or multiple point mutations were constructed. Binding studies and cAMP assays demonstrated that the N-terminal domain exhibited the complete ligand selectivity of xCRF-R1. The important region was mapped between amino acids 70 and 89; replacement of amino acids Arg76, Asn81, Gly83, Leu88, and Ala89 in hCRF-R1 with the corresponding amino acids of xCRF-R1 (Gln76, Gly81, Val83, His88, and Leu89) resulted in a receptor that had approximately 30-fold higher affinity for human/rat CRF than for sauvagine. Mutagenesis of these amino acids in xCRF-R1 to the human sequence completely abolished the ligand selectivity of xCRF-R1. Mutagenesis of amino acids 88 and 89 in hCRF-R1 or xCRF-R1 had only a minor (approximately 2.5-fold) effect on the ligand selectivity of the mutant receptor. Substitution of Arg76, Asn81, and Gly83 in hCRF-R1 with the corresponding sequence of xCRF-R1 (Gln76, Gly81, and Val83) resulted in a receptor with approximately 11-fold higher affinity for human/rat CRF compared with ovine CRF or sauvagine. When only two of these three amino acids were mutated, no effect on the ligand selectivity was observed. On the basis of these data, it is suggested that amino acids 70-89 of CRF-R1 are important for the ligand binding site.  相似文献   

18.
Studies about bone formation and regulation are complex due to a close relationship between bone cells. Primary cell cultures allow to understand osteoblastic function. We isolated cells from the cortical metacarpal bone of 85 or 120 day-old ovine fetuses by an enzymatic method. After first passage and cell amplification, the growth medium (DMEM, ascorbic acid and fetal calf serum 10%) was replaced at confluence by a mineralization medium (MM: DMEM, ascorbic acid, beta-glycerophosphate, insulin). Alkaline phosphatase (ALP) activity in cell-matrix layer increased after 4 days of cultures in MM and maximized at day 6. We also measured osteocalcin, ALP and IGF-I secretion simultaneously during mineralization. PTH, PTHrP and 1.25(OH)2D3 decreased ALP activity in cell-matrix layer after 4 days of treatment in MM without fetal calf serum (FCS). Cells from 120 day-old fetuses were cultivated in MM with 10% FCS during 32 days to induce mineralization. Inorganic phosphorus concentration increased in medium between days 5 and 12, Ca concentration decreased in medium after 12 days of culture. Mineralization started at day 12, in the same time ALP activity appeared in medium. Osteocalcin secretion increased between days 6 and 12, decreased at day 14 and increased from day 16 until day 32. Ovine fetal bone cells produced IGF-I until first days of culture in MM. Such ovine osteoblast phenotype cells having the capacity to differentiate and mineralize in vitro would be a model to study the endocrine regulation of osteoblastic function in large mammals.  相似文献   

19.
20.
The function of cytokines produced during Hymenolepis nana egg infection in mice in protective immunity against re-infection was examined. Treatment of mice with monoclonal antibody (MAb) against mouse interferon (IFN)-gamma caused suppression of protective immunity against H. nana re-infection when the MAb was injected intraperitoneally at a daily dose of 40.0 mg kg-1 during the effector phase of protective immunity. Although high levels of IFN-gamma, tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 beta were released into the intestinal tracts of the parasitised mice at challenge infection, there was almost no release of these cytokines in mice treated with the MAb. Daily administration of rolipram failed to suppress the protective immunity, even when 400 micrograms kg-1 of the agent was administered into mice during the effector phase of immunity. Treatment of mice with rolipram completely suppressed both TNF-alpha and IL-1 beta production in intestinal tracts, induced by H. nana challenge infection. However, endogenous IFN-gamma production in the intestine was scarcely affected by rolipram. These results strongly suggest that IFN-gamma is the most important (or essential) cytokine in protective immunity to H. nana re-infection, rather than TNF-alpha and IL-1 beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号