首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
External bonding of FRP plates or sheets has emerged as a popular method for strengthening reinforced concrete structures. Debonding along the FPR-concrete interface can lead to premature failure of the structures. In this study, a combined cohesive/bridging zone model is presented to simulate the debonding procedure between the FRP and concrete interface. In this model, the crack processing zone of the interface is modeled by a cohesive zone model and the particle interlocking zone of the interface is modeled by a bridging zone model. Two different linearly softening bond stress-slip laws are used to describe these two different zones. Closed-form solutions of interfacial stress, FRP stress and ultimate load are obtained for a typical single-lap specimen and verified with experimental results. The pulling force applied to the FRP plate is found to be proportional to the square root of the energy release rate at the debonding tip for this model. Such a relationship is then extended to any general shapes of bond stress-slip law through J-integral method. A new approach to experimentally determine the bond stress-slip law is also proposed.  相似文献   

2.
Results from an experimental investigation into the influence of freeze-thaw action on the FRP-concrete interface fracture properties are presented. The FRP-concrete bond behavior is investigated using a direct shear test. The cohesive stress transfer between FRP and concrete during debonding is determined from spatially continuous measurements of surface strains obtained at different stages of the debonding load response. The non-linear material law for the interface shear fracture, which provides a relation between the interface shear stress as a function of relative slip between the FRP and concrete, is established for specimens subjected to different levels of damage associated with freezing and thawing action. The influence of freeze-thaw action on the cohesive stress transfer during crack propagation, and on the cohesive interface fracture parameters is evaluated using a statistical hypothesis testing method. A larger percentage decrease in the interface fracture energy due to freeze-thaw cycles compared to the corresponding decrease in the ultimate nominal stress at debonding was noted. A decrease in the length of the cohesive stress transfer zone and the maximum interface cohesive stress were also observed with freeze-thaw cycling.  相似文献   

3.
In this paper, the fatigue response of adhesively bonded joints under variable amplitude (VA) cyclic loading was predicted using a numerical model. The adhesive layer was modelled using the cohesive zone model with a bi-linear traction-separation response. A damage model, incorporating fatigue load ratio effects, was utilised in conjunction with the cohesive zone model to simulate the detrimental influence of VA fatigue loading. This model was validated against published experimental results obtained from fatigue tests of adhesively bonded single lap joints subjected to various types of VA fatigue loading spectra. This model successfully predicted the damaging effect of VA fatigue loading on the adhesively bonded joints and was generally found to be a significant improvement on the other damage models considered.  相似文献   

4.
Analytical solutions for beam specimens used in fracture-mechanics testing of composites and adhesively-bonded joints typically use a beam on an elastic foundation model which assumes that a non-infinite, linear-elastic stiffness exists for the beam on the elastic foundation in the region ahead of the crack tip. Such an approach therefore assumes an elastic-stiffness model but without the need to assume a critical, limiting value of the stress, max, for the crack tip region. Hence, they yield a single fracture parameter, namely the fracture energy, G c. However, the corresponding value of max that results can, of course, be calculated from knowledge of the value of G c. On the other hand, fracture models and criteria have been developed which are based on the approach that two parameters exist to describe the fracture process: namely G c and max. Here max is assumed to be a critical, limiting maximum value of the stress in the damage zone ahead of the crack and is often assumed to have some physical significance. A general representation of the two-parameter failure criteria approach is that of the cohesive zone model (CZM). In the present paper, the two-parameter CZM approach has been coupled mainly with finite-element analysis (FEA) methods. The main aims of the present work are to explore whether the value of max has a unique value for a given problem and whether any physical significance can be ascribed to this parameter. In some instances, both FEA and analytical methods are used to provide a useful crosscheck of the two different approaches and the two different analysis methods.  相似文献   

5.
为了给碳纤维增强聚合物(CFRP)复合材料粘接结构的安全设计及应用提供参考,针对CFRP复合材料-铝合金对接接头,研究了拉-拉交变载荷作用下的疲劳寿命特性及剩余强度变化规律。设计专用夹具,完成接头的制作及固化,并测试其拉伸、剪切准静态失效强度,在此基础上进行不同载荷水平下的疲劳寿命测试。选取特定载荷水平,测试不同循环次数后的接头剩余强度,并对失效形式进行观察分析。结果表明:CFRP复合材料-铝合金对接接头强度-寿命(S-N)曲线在单对数坐标上符合线性函数规律;随着交变载荷循环周期的增加,接头剩余强度呈先慢后快的下降趋势,而且在较大的载荷水平下,下降幅度更为明显;经历交变载荷循环前、后接头失效形式发生改变,由局部CFRP复合材料表层撕裂转变为局部界面破坏。结合试验测试所获得的初始失效准则,并引入疲劳退化因子,建立内聚力模型对交变载荷作用下的粘接接头强度衰减进行数值模拟,结果表明所建立模型能够有效预测交变载荷作用下的接头剩余强度。   相似文献   

6.
提出了一种改进的实验与数值混合法。该方法采用随机短纤维增强复合材料的紧凑拉伸实验,首先得到材料的宏观内聚力模型,进而确定该材料纤维基体界面微观内聚力模型参数。通过有限元法和基于场投影的反解法得到了宏观内聚力模型结果,对比分析这两个方法的结果,得出该反解法对误差的容忍度较低。随后采用改进的反解法,用数字图像相关法(DIC)直接获取宏观内聚力模型分离量,减少了该反解法未知数的数量,提高了容错率。再将DIC和改进的反解法结合,对该材料裂纹尖端宏观内聚力区的牵引力进行了反解。采用双线性内聚力模型,根据Mori-Tanaka方法,将求得的宏观内聚力定律与纤维基体界面微观内聚力定律关联起来,从而求得了纤维基体界面微观内聚力模型参数。该方法和结果可为短纤维增强复合材料纤维基体界面的微观力学分析提供实验基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号