首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advancements in scaling gate insulators for MOS transistors permit low-voltage, silicon-oxide-nitride-silicon (SONOS) nonvolatile semiconductor memories (NVSMs) for a wide range of applications. The continued scaling of SONOS devices offers improved performance with a small cell size, single-level polysilicon with low voltage, fast erase/write, improved memory retention, increased endurance, and radiation hardness. In this article, we discuss scaled SONOS devices, SONOS memory technology, and some SONOS NVSM applications  相似文献   

2.
The deterioration of the Si-SiO2 interface is associated with the degradation of long-term retention in polysilicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile semiconductor memory (NVSM) devices. Two-step high temperature deuterium anneals, applied in SONGS device fabrication for the first time, improves the endurance characteristics and retention reliability over traditional hydrogen anneals. Electrical characterization shows deuterium-annealed SONOS devices have nearly one order of magnitude longer retention time than hydrogen-annealed devices after 107 erase/write cycles at 85°C to provide an extrapolated 0.5 V detection window at ten years  相似文献   

3.
《Solid-state electronics》2006,50(9-10):1667-1669
In this paper, we present a new Polysilicon–Aluminum Oxide–Nitride–Oxide–Silicon (SANOS) device structure suitable for future nonvolatile semiconductor memories. Replacing SiO2 with a high-K material, Al2O3 (Kf = 9) as the top blocking layer of the conventional SONOS device increases the electric field across the tunnel oxide, while reducing the electric field across the blocking layer with its dielectric constant during write and erase operations. Therefore, this new device can achieve lower programming voltages and faster programming speed than the conventional SONOS device. We have fabricated SANOS capacitors with 2 nm tunnel oxide, 5 nm silicon nitride and 8 nm aluminum oxide and studied the programming speed and charge retention characteristics of the new devices. These new SANOS devices achieve a 2 V reduction in the programming voltages with 2.1 V initial memory window.  相似文献   

4.
We have modeled and characterized scaled Metal–Al2O3–Nitride–Oxide–Silicon (MANOS) nonvolatile semiconductor memory (NVSM) devices. The MANOS NVSM transistors are fabricated with a high-K (KA = 9) blocking insulator of ALD deposited Al2O3 (8 nm), a LPCVD silicon nitride film (8 nm) for charge-storage, and a thermally grown tunneling oxide (2.2 nm). A low voltage program (+8 V, 30 μs) and erase (?8 V, 100 ms) provides an initial memory window of 2.7 V and a 1.4 V window at 10 years for an extracted nitride trap density of 6 × 1018 traps/cm3 eV. The devices show excellent endurance with no memory window degradation to 106 write/erase cycles. We have developed a pulse response model of write/erase operations for SONOS-type NVSMs. In this model, we consider the major charge transport mechanisms are band-to-band tunneling and/or trap-assisted tunneling. Electron injection from the inversion layer is treated as the dominant carrier injection for the write operation, while hole injection from the substrate and electron injection from the gate electrode are employed in the erase operation. Meanwhile, electron back tunneling is needed to explain the erase slope of the MANOS devices at low erase voltage operation. Using a numerical method, the pulse response of the threshold voltages is simulated in good agreement with experimental data. In addition, we apply this model to advanced commercial TANOS devices.  相似文献   

5.
The over-erase phenomenon in the polysilicon-oxide-silicon nitride-oxide-silicon (SONOS) memory structure is minimized by using hafnium oxide or hafnium aluminum oxide to replace silicon nitride as the charge storage layer (the resulting structures are termed SOHOS devices, where the "H" denotes the high dielectric constant material instead of silicon nitride). Unlike SONOS devices, SOHOS structures show a reduced over-erase phenomenon and self-limiting charge storage behavior under both erase and program operations. These are attributed to the differences in band offset and the crystallinity of the charge storage layer.  相似文献   

6.
An n-channel Si-gate process has been developed to fabricate MNOS EEPROM transistors and fast logic circuits on one chip. The technology proposed involves low thermal oxidation temperatures ≤900°C after nitride deposition, two LOCOS process steps and application of self-aligned overlapped poly-Si contacts. The MNOS memory transistors obtained have been programmed by ±25 V pulses with a write time of tw = 10 ms and an erase time of te = 100 ms.The retention data have been found to be dependent on nitride thickness and threshold voltage shift, but independent of channel length and channel doping. For devices with a nitride thickness of 30.5 nm the short-term decay rate of 0.6 V/(decade of time) has been determined. Endurance testing using up to 107 pulses of ±25 V, 100 μs corresponding to approx. 104 write/erase cycles showed no time dependence for the decay rate over the time of 105 min in which retention measurements were made.  相似文献   

7.
A 1 Mb 5 V-only EEPROM (electrically erasable programmable ROM) with metal-oxide-nitride-oxide-semiconductor (MONOS) memory cells specifically designed for a semiconductor disk application is described. The memory has high endurance to write/erase cycles and a relatively low programming voltage of ±9 V. These advantages result from the structure and the characteristics of the MONOS memory cell. A newly developed dual-gate-type MONOS memory cell has a small unit cell area of 18.4 μm2 with 1.2 μm lithography, and the die size of the fabricated chip is 5.3 mm×6.3 mm. A new programming scheme called multiblock erase solved the problem of slow programming speed. A programming speed of up to 1.1 μs/B equivalent (140 ms/chip) was obtained  相似文献   

8.
Write/erase and charge retention characteristics of a memory element for the electrically programmable read-only memory based on the silicon/oxide_l/oxide_2/silicon_dot/oxide/semiconductor structure were simulated. An alternative high-κ dielectric (ZrO2) was used as a blocking oxide and the second tunnel oxide. A thin low-κ dielectric (SiO2) was used as the first tunneling oxide. Due to such a configuration, injection characteristics of tunneling SiO2 in the write/erase mode can be significantly improved; hence, the response rate and injected charge can be increased. At the same time, the use of the sufficiently thick blocking and second tunneling layers allows injected charge retention for a long time. Programming by a pulse 10 ms long with an amplitude of ±11 V makes it possible to obtain a memory window of ~6 V in 10 years.  相似文献   

9.
Reliability issues of flash memory cells   总被引:3,自引:0,他引:3  
Reliability issues for flash electrically erasable programmable read-only memories are reviewed. The reliability of both the source-erase type (ETOX) flash memory and the NAND structure EEPROM are discussed. Disturbs during programming, write/erase endurance, charge loss of both devices are reviewed, and the reliability of the tunnel oxide and the interpoly dielectric are described. It is shown that bipolarity F-N programming/erase, which is used in the NAND EEPROM, improves the charge to breakdown and decreases the stress-induced leakage current  相似文献   

10.
A single-sided PHINES SONOS memory with hot-hole injection in program operation and Fowler-Nordheim (FN) tunneling in erase operation has been demonstrated for high program speed and low power applications. High programming speed (/spl Delta/V/sub t//program time) of 5 V/20 /spl mu/s, low power consumption of P/E, high endurance of 10 K, good retention, and scaling capability can be demonstrated.  相似文献   

11.
New phenomena in MNOS retention characteristics that originate from stored charge distribution are described and new scaling guidelines are indicated. The most significant phenomenon is that write-state retentivity is less dependent on the programmed depth, and is improved by reducing silicon nitride thickness. This behavior suggests that write-state charges are distributed rectangularly, while erase-state charges are distributed exponentially. The lower limit of the programming voltage is determined by write-state retentivity and not erase-state retentivity, and the write-state charge distribution depth determines the lower limit of silicon nitride thickness. The upper limit of the programming voltage is determined by erase-state retentivity after erase/write cycles. The scaling guidelines indicate that 16-Mb EEPROMs can be designed using MNOS memory devices  相似文献   

12.
Read disturb-induced erase-state threshold voltage instability in a localized trapping storage Flash memory cell with a poly-silicon-oxide-nitride-oxide-silicon (SONOS) structure is investigated and reported. Our results show that positive trapped charge in bottom oxide generated during program/erase (P/E) cycles play a major role. Both gate voltage and drain voltage will accelerate the threshold voltage (V/sub t/) drift. Hot-carrier caused disturb effect is more severe in a shorter gate length device at low temperature. A model of positive charge-assisted electron tunneling into a trapping nitride is proposed. Influence of channel doping on the V/sub t/ drift is studied. As the cell is in an "unbiased" storage mode, tunnel detrapping of positive oxide charges is responsible for the threshold voltage shift, which is insensitive to temperature.  相似文献   

13.
A highly reliable nonvolatile memory device suitable for high-density electrically erasable and programmable read only memories (EEPROMs) is described. A metal-oxide-nitride-oxide-semiconductor (MONOS) structure whose top oxide is fabricated by chemical vapor deposition (CVD) on the nitride is proposed. This CVD oxide is densified by pyrogenic annealing and has stoichiometric SiO2 characteristics. Its potential barrier, which prevents stored charges from decaying through the top oxide to the gate, thus becomes sharper than that of the thermally grown top oxide used in the conventional MONOS structure. For comparison between the proposed MONOS, conventional MONOS, and MNOS structures, three devices were fabricated on the same process line. The 16.7-nm nitride thickness in combination with a top oxide thickness of 4.0 nm results in a gate capacitance equivalent to that of the conventional NMOS structure with a 23.5-nm nitride thickness. Moreover, an asymmetric erase/write programming voltage has been adapted to the MONOS device operation by considering both erased-state degradation and written-state retention. At 85 °C, the proposed MONOS device has 107-cycle endurance with 10-year data retention  相似文献   

14.
We report on the full process integration of nanocrystal (NC) memory cells in a stand-alone 16-Mb NOR Flash device. The Si NCs are deposited by chemical vapor deposition on a thin tunnel oxide, whose surface is treated with a low thermal budget process, which increases NC density and minimizes oxide degradation. The device fabrication has been obtained by means of conventional Flash technology, which is integrated with the CMOS periphery with high- and low-voltage transistors and charge pump capacitors. The memory program and erase threshold voltage distributions are well separated and narrow. The voltage distribution widths are related to NC sizes and dispersion, and bigger NCs can induce a cell reliability weakness. An endurance issue is also related to the use of an oxide/nitride/oxide dielectric which acts as a charge trapping layer, causing a shift in the program/erase window and a distribution broadening during cycling.  相似文献   

15.
In this paper, bottom-oxide thickness (Tbo) and program/erase stress effects on charge retention in SONOS Flash memory cells with FN programming are investigated. Utilizing a numerical analysis based on a multiple electron-trapping model to solve the Shockley-Read-Hall rate equations in nitride, we simulate the electron-retention behavior in a SONOS cell with Tbo from 1.8 to 5.0 nm. In our model, the nitride traps have a continuous energy distribution. A series of Frenkel-Poole (FP) excitation of trapped electrons to the conduction band and electron recapture into nitride traps feature the transitions between the conduction band and trap states. Conduction band electron tunneling via oxide traps created by high-voltage stress and trapped electron direct tunneling through the bottom oxide are included to describe various charge leakage paths. We measure the nitride-charge leakage current directly in a large-area device for comparison. This paper reveals that the charge-retention loss in a high-voltage stressed cell, with a thicker bottom oxide (5 nm), exhibits two stages. The charge-leakage current is limited by oxide trap-assisted tunneling in the first stage and, then, follows a 1/t time dependence due to the FP emission in the second stage. The transition time from the first stage to the second stage is related to oxide trap-assisted tunneling time but is prolonged by a factor  相似文献   

16.
Potential of high-k dielectric films for future scaled charge storage non-volatile memory (NVM) device applications is discussed. To overcome the problems of charge loss encountered in conventional flash memories with silicon-nitride (Si3N4) films and polysilicon-oxide-nitride-oxide-silicon (SONOS) and nonuniformity issues in nanocrystal memories (NC), such as Si, Ge and metal, it is shown that the use of high-k dielectrics allows more aggressive scaling of the tunnel dielectric, smaller operating voltage, better endurance, and faster program/erase speeds. Charge-trapping characteristics of high-k AlN films with SiO2 as a blocking oxide in p-Si/SiO2/AlN/SiO2/poly-silicon (SOHOS) memory structures have been investigated in detail. The experimental results of program/erase characteristics obtained as the functions of gate bias voltage and pulse width are presented.  相似文献   

17.
A discussion of the factors which determine the endurance of thin-oxide MNOS memory transistors is presented. Si-SiO2interface states are influential in the early stages of erase/write cycling, while charge movement into the nitride controls the long term cycling characteristics. Other important variables include the method of preparation of the thin-oxide region, its composition, dielectric properties and thickness; the high density of spatially localized traps near the nitride-oxide interface; the low conductivity Si3N4dielectric, and electric field strengths. Optimizing these variables permits MNOS memory transistors to be operated with high endurance, reliably to beyond 1010erase/write cycles with ±20-V, 100-µs pulses and demonstrate a minimum 2-V memory window at 2900 h retention time.  相似文献   

18.
Low voltage organic field effect memory transistors are demonstrated by adapting a hybrid gate dielectric and a solution processed graphene oxide charge trap layer. The hybrid gate dielectric is composed of aluminum oxide (AlOx) and [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) plays an important role of both preventing leakage current from gate electrode and providing an appropriate surface energy to allow for uniform spin-casting of graphene oxide (GO). The hybrid gate dielectric has a breakdown voltage greater than 6 V and capacitance of 0.47 μF/cm2. Graphene oxide charge trap layer is spin-cast on top of the hybrid dielectric and has a resulting thickness of approximately 9 nm. The final device structure is Au/Pentacene/PMMA/GO/PhO-19-PA/AlOx/Al. The memory transistors clearly showed a large hysteresis with a memory window of around 2 V under an applied gate bias from 4 V to −5 V. The stored charge within the graphene oxide charge trap layer was measured to be 2.9 × 1012 cm−2. The low voltage memory transistor operated well under constant applied gate voltage and time with varying programming times (pulse duration) and voltage pulses (pulse amplitude). In addition, the drain current (Ids) after programming and erasing remained in their pristine state after 104 s and are expected to be retained for more than one year.  相似文献   

19.
A two-transistor SIMOS EAROM cell   总被引:1,自引:0,他引:1  
A new, electrically alterable, nonvolatile memory cell, consisting of a floating gate memory transistor and an access transistor, has been developed using the self-aligned n-channel stacked-gate injection-type MOS (SIMOS) technique. Programming is achieved by two mechanisms: channel injection of hot electrons and field emission. Analysis of experimental data shows that the contribution of the field emission mechanism to programming is significantly high when the memory device operates in the depletion mode. Erase occurs via field emission of electrons from the floating gate through a thin oxide thermally grown on monosilicon to an n/SUP +/-diffusion area placed outside the channel region of the memory transistor. This additional floating gate/n/SUP +/-diffusion overlap is also utilized to increase the programming efficiency by applying a voltage to the n/SUP +/-diffusion terminal in addition to the gate and the drain voltage. This voltage is shown to have a strong influence on the two programming mechanisms. Memory retention compares favorably with that of the most advanced electrically programmable, read-only memory (EPROM) devices. Endurance is limited by charge trapping in the thin erase oxide to approximately 10000 write/erase cycles.  相似文献   

20.
Improved high-performance MNOS (HiMNOS II) technology has been developed for application to a byte-erasable 5-V only 64-kbit EEPROM. A minimum feature size of 2 /spl mu/m and scaling theory implementation for the MNOS device have led to the realization of a small cell size of 180/spl mu/m2, a low programming voltage of 16 V, and a high packing density of 64 kbits. The high-voltage structure of the MNOS device, as well as the high-voltage circuit technology, has been developed to eliminate dc programming current in the memory array and the high-voltage switching circuits for the use of on-chip generated programming voltage. This voltage is regulated with an accuracy of /spl plusmn/1 V by using a Zener diode formed in a p-type well. Moreover, in order to accomplish reliable byte erasing, high-voltage switching circuits and their control logic have been carefully designed so as to eliminate the possibility of erroneous writing or erasing due to a timing skew of the high-voltage application to the memory cells. The obtained 64K EEPROM chip shows such superior characteristics as a fast access time of 150 ns, low power dissipation of 55 mA, high-speed write and erase times of less than 1 ms, and high endurance of less than 1-percent failure after 10/sup 4/ write/erase cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号