共查询到18条相似文献,搜索用时 234 毫秒
1.
2.
介绍了原棉在线异性纤维检测系统的结构及工作原理.采用RGB颜色模型,以色度为主要特征量,设定阈值对棉花和异物的像素点进行判别.并通过Visual C++语言实现了此算法,得到了较好的效果. 相似文献
3.
4.
5.
Matlab语言是具有强大矩阵运算能力的可视化计算软件。边缘检测技术是数字图像处理非常重要的内容,属于图像分析的范畴。着重阐述了在原棉检测中棉花异性纤维的边缘检测算法和重心定位算法,并通过Matlab语言实现了这两种算法,得到了很好的效果。 相似文献
6.
7.
8.
9.
10.
为了实现棉花异性纤维分类识别与计重的自动化,本文建立了一种棉花异性纤维分类识别和计重系统SIW(system of identification and weight statistics),提出了系统的组成结构和工作原理,对系统关键的硬件设备和软件实现过程作了必要的说明,包括场景图像的采集、图像处理和识别方法以及计重模型的建立。最后对SIW系统进行测试,测试结果证明,该系统可以有效地识别出棉花中的异性纤维,并准确得到各种异性纤维的重量,实现异性纤维检测和计重的全程自动化。 相似文献
11.
The detecting of foreign fiber may not be very effective, particularly around the detection zone where many types of foreign fibers may coexist. In order to eliminate the fibers more effectively, a model has been established to detect foreign fiber faults in yarn. Relevant data were collected through investigation of a number of standard samples, with the length and area of foreign fibers as the independent variables, and the number of defects as the dependent variable, which were combined using linear regression theory to establish a regression equation for different fiber defects. The equations to find the regression coefficients, which include the model fitting degree, the Durbin–Watson value, the standard error, and the Cook distance, were rigorously tested, and the regression equation was eventually compiled to produce the yarn faults model. When the fiber detection equipment recognizes fibers with a foreign profile, the calculated profile fiber size is used in a corresponding regression equation which obtains the defect points and compares them with each other, so that foreign fibers which are potentially more dangerous can be identified and preferentially eliminated. In order to verify the model, spinning experiments are performed. The actual defects from the experiment are compared with the predicted theoretical defects from the equation, and the prediction accuracy was found to reach more than 95%, showing that the foreign fiber yarn faults model, which lays a theoretical foundation for foreign fiber detection, is accurate and effective. 相似文献
12.
针对籽棉图像阴影多、常规图像处理方法难于识别的问题,以去除棉叶、棉壳等有机杂物的籽棉为样本,将不同颜色、形状、尺寸的12种常见异性纤维和籽棉样本随机地分布在运转中的传送带上,采用线扫描相机获得发光二极管(LED)照明的籽棉图像520张,“LED+线激光”双光源照明的籽棉图像1 148张。然后采用一种由13个卷积层、13个采样层和4个池化层构成的Faster RCNN深度学习人工神经网络,对 2 种成像方法获得的籽棉图像进行基于人工智能的网络训练,再进行异性纤维检测验证。实验数据表明,LED照明和“LED+线激光”双光源照明条件下,籽棉图像中的异性纤维的检出率分别达到了90.3%和86.7%,特别是LED照明条件下对白色异性纤维进行识别,其识别率由5.9%提升到了90.3%。 相似文献
13.
14.
在棉纺企业原棉异性纤维剔除工艺过程中,异性纤维种类及特征多样,难以构造统一的识别模型,为此,提出了一种基于聚类统计分析的棉花异性纤维图形检测算法。通过获取原棉纤维及异性纤维在RGB颜色模型空间的各分量值,进行数值聚类统计分析,采用RGB彩色图像阈值聚类统计分类的方法将获取的图片信息分为3类,进而判断有无异性纤维,再经过形态学等预处理修缮图像,对棉花中异性纤维的特征进行提取,较准确地得到异性纤维的面积、质心坐标和周长等参数,为异性纤维的清除提供条件。实验结果表明,该算法能较准确地识别异性纤维。 相似文献
15.
16.
为了识别有较大表情变化的人脸,利用sift算法找到人脸图像中的DoG关键点,用这些极值点所包含的灰度信息和位置信息建立最小生成树,再使用最小生成树估计联合Rényi熵,结合图论中的图匹配知识,进行人脸识别.实验结果表明,该算法在人脸出现较大表情变化的情形下仍能够得到较为准确的识别结果. 相似文献
17.
针对现有的异纤清理机无法彻底清除异性纤维的问题,提出了一种在籽棉轧花前对异性纤维进行检测的方法。以清除了铃壳、茎、叶等有机杂物的籽棉和常见的21种有色及白色异纤为检测样本,在白色LED和红色线激光双光源照明获取图像,在RGB颜色空间的R 通道和HSI颜色空间的S通道利用改进的索贝尔(Sobel)边缘检测算法检测异纤。同时在S通道利用一维最大熵法以提高异纤检测率。实验结果表明:采用的双光源照明成像方法和图像处理算法可减少阴影等干扰,白色异纤的检出率可达到74.7%,有色异纤的检出率可达到70.8%,为籽棉中异性纤维的检测提供了参考和借鉴。 相似文献
18.
为进一步提高棉花中异性纤维的检出率,针对光学成像技术在异性纤维检测中的应用情况进行探究,通过阐述紫外光、X射线、线激光、偏振光、红外光和高光谱成像技术的原理和检测效果,分析了各成像方法的优势及局限性。归纳总结了现有研究中存在的问题和不足,认为目前不同种类异性纤维检测适用的成像方法不同,无法同时检测出全部种类的异性纤维;而且多相机成像方案和相机分辨率的提高增加了图像冗余信息,影响了检测速度;同时大部分检测方法仅在实验室条件下得到验证,缺乏实际生产环境的检验。最后指出未来会以多相机多光源成像方案为主,减少图像信息冗余,合理选择光源的种类、数量、功率和安装方式,开发成像系统参数自动调整系统。 相似文献