共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
随着对辫状河储层构型研究的深入,储层构型控制下的流动单元分布规律成为研究的重点问题。以大港油区A油田馆陶组辫状河储层为例,在辫状河储层构型分析的基础上,研究了辫状河流动单元的划分方法及其分布规律。首先在渗流屏障的识别、连通体划分和连通体内渗流差异分析的基础上,结合研究区储层非均质特征,优选了泥质含量、孔隙度、流动带指数和流度4个判别参数,应用聚类分析的方法,将储层划分为最好(Ⅰ类)、较好(Ⅱ类)、中等(Ⅲ类)、较差(Ⅳ类)和最差(Ⅴ类)5类流动单元;然后根据流动单元的判别标准,进行单井流动单元划分,并在此基础上,运用流动单元剖面和平面互动分析的方法,研究了流动单元的平面和剖面分布规律。结果表明:平面上,优质流动单元主要分布在心滩核部、砂质充填河道等砂体主体部位;垂向上,河道底部的流动单元优于河道顶部,在心滩内部夹层上、下流动单元类型会发生变化。 相似文献
5.
6.
储层流动单元划分方法与应用 总被引:3,自引:0,他引:3
储层流动单元划分是进行已开发油田剩余油分布研究的重要方法。由于我国东部某油田某区块受沉积环境、成岩作用和构造因素的综合影响,储层非均质性强,井间和层间矛盾突出,综合含水差异较大,流动层带复杂等问题,在储层流动单元划分中应从多方面考虑。通过主因子分析从能够反映沉积环境、成岩作用、构造因素、岩石微观孔隙结构和储层物性等18个参数中优选出符合研究区实际的地层流动带指数、砂地比、渗透率、孔隙度、渗透率突进系数、渗透率均值系数和隔夹层分布密度等7个参数,作为流动单元划分依据,建立判识函数。将研究区流动单元划分为3类,并指出Ⅱ类流动单元分布区具有较好的剩余油开发潜力,划分的结果与沉积微相展布及实际开发状况吻合较好。 相似文献
7.
介绍了储层流动单元的研统方法,确定了流动单元分类与划分的参数。对双河油田V下油组储层流动单元进行了定量研究。对于取心井,利用岩心的物理分析资料,参照油田开发的实际情况,选择了聚类分析和流动分层指标方法,将其划分为4种流动单元类型,并分析了不同类型流动单元的流动分层指标的分布范围。对于非取心井,利用取心井聚类分析的结果,采用逐步判别分析方法,建立了流动单元类型的判别函数,从而达到了定量研究流动单元类型及其井间分布的目的。生产实践证实,运用这种研究思路划分流动单元的结果与生产实际吻合程度高,说明了这种研究方法是切实可行的。 相似文献
8.
储层流动单元研究是国外20世纪80年代中后期兴起的一种储层研究方法。由于地质条件、实际资料的限制及研究的出发点不同,人们对流动单元的认识及研究方法也不完全一致。 相似文献
9.
史彦尧 《勘探地球物理进展》2011,(Z1):7-14
针对大芦湖油田樊107块沙三中储层砂体分布规律性差、非均质性强等,借助岩心、测井资料,以地质研究为基础,优选了与储集层岩性、物性及渗流特征相关的宏观、微观参数,应用聚类分析和判别分析相结合的方法,将储集层划分为4类流动单元。并应用序贯指示模拟方法建立了流动单元三维地质模型,结合油藏数值模拟的结果,分析了各类流动单元与剩余油分布的关系,结果符合实际开发规律,同时明确了剩余油分布情况,为下一步制定具体的调整方案提供了地质依据。 相似文献
10.
针对蟠龙油田王庄区含水率高、产量递减快、储集层非均质性严重的开发现状,通过对表征储层的5项属性参数判别流动单元的能力及参数间相关性分析.选取泥质体积分数、孔隙度、流动分层指标3项参数作为长2储层流动单元划分参数。这些参数客观反映了研究区长2储层低孔、低渗、储层物性差及非均质性强等地质特征,应用聚类分析和判别分析相结合的方法,将长2储层划分为A、B、C、D等4类流动单元。分析了4类流动单元的岩性、物性、沉积微相及展布特征,不同流动单元具有不同的渗流能力和储集能力,因此油田开发中应采取不同的开发对策。 相似文献
11.
油房庄油田定31井区长1油层组流动单元的划分及其地质意义 总被引:1,自引:3,他引:1
通过对鄂尔多斯盆地油房庄油田定31井区长1油层组进行沉积分层,并依据岩石物理特征参数,采用直接聚类分析的方法,将该区长1油层组划分为A、B、C、D四类流动单元并对其地质意义进行了分析。研究结果表明,A类流动单元渗流能力和储集能力强,采出程度高,剩余油饱和度低;B类流动单元渗流能力和储集能力较强,采出程度较高,为研究区主要的生产层系;C类流动单元渗流能力和储集能力一般,采出程度较低,剩余油饱和度相对较高;D类流动单元渗流能力和储集能力差,为非产层。 相似文献
12.
13.
Flow unit classifications can be used in reservoir characterization and modelling of heterogeneous carbonate reservoirs where there is uncertainty and variability in the distribution of porosity and permeability. A flow unit classification requires the integration of geological and petrophysical data, together with reservoir engineering and production data. In this study, cores and thin sections from the upper part of the Cretaceous Sarvak Formation at the Dehluran field, SW Iran, were studied to identify flow units which were then used in reservoir modelling. Eight flow units were defined based on a classification of depositional environments and diagenetic processes and an evaluation of porosity and permeability. In lagoonal deposits, two flow units were distinguished in terms of dissolution effects (i.e. low or high values of vuggy porosity). In shoal/reef deposits, three flow units were distinguished in terms of cementation volumes and grain frequency. In open‐marine deposits, two flow units were identified with different degrees of dissolution; while intrashelf basinal deposits were characterized by a single flow unit with no observable reservoir potential. Each flow unit was characterized by unique values of porosity, permeability, water saturation and pore throat distribution. Grain‐supported deposits from high energy depositional environments (shoals) had the highest porosities and permeabilities. However, these rocks were frequently cemented with a consequent reduction in porosity and permeability. By contrast, low permeability mud‐supported deposits had undergone dissolution, forming highly permeable flow units. Capillary pressure curves from mercury injection were used to determine the distribution of pore throat sizes and the pore characteristics of the flow units, and were used to give an indication of the productivity of each flow unit. Flow units were modelled using a pixel‐based modelling tool. Modelled reservoir characteristics were mainly controlled by facies changes in the vertical direction, and by diagenetic variations in the horizontal direction. Input values for the geometry of the flow units were based on information from geological and diagenetic models of the reservoir, and from thickness maps of the flow units derived from well data. 相似文献
14.
The South Pars gasfield (offshore southern Iran) has been investigated in detail in recent studies in terms of depositional, diagenetic and reservoir properties of the Permian‐Triassic carbonate succession. In the present paper, a variety of flow unit approaches were applied to identify reservoir (flow) and non‐reservoir (baffle or barrier) units within the Permian‐Triassic carbonates. The zonation scheme was based on three approaches; (i) flow units were identified using the stratigraphic modified Lorenz plot (SMLP) method; (ii) hydraulic flow units were identified using a parameter known as the flow zone indicator (FZI); and (iii) petrophysical flow units (PFUs) were determined using the pore throat radius (R35) and water saturation (Sw) parameters. Studies of flow units at both macro‐ and micro‐scales showed that flow properties were controlled by both depositional and diagenetic features. In order to construct a reservoir flow model, the flow units and PFUs were correlated between the four wells studied within a sequence stratigraphic framework. SMLP‐derived flow units appeared to be distributed homogenously within the reservoir succession resulting in a layer‐cake architecture. By contrast, the FZI‐derived hydraulic flow units drew attention to the presence of small‐scale heterogeneities within the reservoir. A comparison between these methods showed that the flow model derived from PFUs included greater vertical and horizontal heterogeneities, especially in the Upper Dalan Member (upper K4 reservoir unit). This was due to depositional/diagenetic heterogeneities in both lateral and vertical directions, and the parameters applied in the PFU method. The PFU‐derived flow model showed a closer relationship to the actual reservoir performance than the flow units derived by the other methods and can therefore be used as the basis for future dynamic flow simulation. 相似文献
15.
针对数学手段在解决地层流动单元划分方面的不足,采用了分层次的流动单元研究思路,对塔中油田塔中11油藏志留系潮坪相储层进行了流动单元研究。在应用高分辨率层序地层学建立等时地层格架的基础上,首先开展渗流屏障研究并确定出储层内连通体的分布。然后综合采用基于孔渗的宏观参数FZI和微观参数R35建立流动单元的聚类样本和判别函数,分别划分出取心井和非取心井的流动单元类型。最后根据单井划分结果,在储层结构模型的约束下,优选随机建模方法对流动单元的分布进行横向预测,建立了流动单元分布的三维模型。实践证明,流动单元分层次的研究方法在潮坪相地层中同样有好的应用效果。 相似文献
16.
榆林气田山西组储层具有低孔低渗、复杂孔隙结构的地质特征,在研究该区储层特征的基础上依据岩心和测井资料,应用孔隙几何学的方法,研究了工区储层的流动单元特征,采用FZI法把该区划分为五种类型的流动单元,并建立了流动单元的划分标准和评价模式。同类流动单元的孔—渗关系呈现出规律性变化,其孔隙类型和结构趋于一致,表现出相似的测井响应特征。并建立了流动单元的划分标准和评价模式。 相似文献
17.
岩石物理流动单元的概念及其研究现状 总被引:3,自引:0,他引:3
岩石物理流动单元(Petrophysical Flow Unit),也称为储层流动单元(Reservoir Flow Unit),是20世纪80年代中后期在国外石油界逐渐流行起来的一个新的概念,其目的是用以定时描述和评价储集岩(层)的岩石物理性质,为油气的勘探和开发服务。岩石物理流动单元是在高分辨率、高频层序格架内对储集岩体进行精细沉积微相分析和非均质性定量描述和评价的一种综合研究储层内流体流动特性的新思路和综合技术方法。对岩石物理流动单元的概念和研究现状作了简要评述,期望引起国内同行的关注。 相似文献
18.
19.
储层流动单元划分方法在苏里格气田的应用 总被引:6,自引:4,他引:6
为了能更高效地开发苏里格气田,必须对储层内部结构等因素深入研究,表征它们的性质及对气体渗流的影响,因此从流动单元的角度对苏里格气田气体渗流机理进行研究是非常必要可行的。文章在渗流屏障分析基础上,运用了FZI、聚类分析和相关的分析方法,利用取心井资料和测井解释物性资料对苏里格气田盒8段下进行了流动单元的划分,共划分了3类流动单元,得出了每一类流动单元的判别函数,从而进行全区气井流动单元的划分。研究结果表明,物性和储集能力都较好的流动单元大部分位于心滩沉积微相中部,部分分布于心滩微相顶底部;河道沉积是控制物性较好流动单元的主要沉积微相之一。储层流动单元比沉积微相更精细地刻化了影响储层流体流动的地下结构,通过流动单元的研究可以预测剩余油的可能分布。 相似文献
20.
单井流量计量装置是为解决串联油井的单井量油而研究的,该装置由量油器、记录仪表及管阀附件等组成。其工作原理是将油、气、水混合物中的油、水液流量转化为电信号输出并加以记录,从而测量出单井的日产液量。重复性好,不受原油物性及含杂质的影响,适合抽油机脉动流态。在现场通过10口井的应用,它较好的解决了串联油井计量问题,能够保证油井稳定生产,提高油井生产时效,并为油井的科学管理提供了可靠的资料。 相似文献