首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of cold work and sensitization treatment on the microstructure and corrosion resistance of a nickel-free high nitrogen stainless steel (HNSS) in 0.5 M H2SO4 + 0.5 M NaCl, 3.5% NaCl and 0.5 M NaOH + 0.5 M NaCl solutions have been investigated by microscopic observations, electrochemical tests and surface chemical analysis. Cold work introduced a high defect density into the matrix, resulting in a less protective passive film as well as reduced corrosion resistance for heavily cold worked HNSS in a 3.5% NaCl solution. No obvious degradation in corrosion resistance took place in a 0.5 M H2SO4 + 0.5 M NaCl solution, possibly due to the stability of the passive film in this solution. Sensitized HNSSs showed reduced corrosion resistance with increasing cold work level in both 3.5% NaCl and 0.5 M H2SO4 + 0.5 M NaCl solutions due to a reduction in the anti-corrosion elements in the matrix during the cold work-accelerated precipitation process. The cold work and sensitization treatment had no influence on the corrosion resistance of the HNSS in the 0.5 M NaOH + 0.5 M NaCl solution even though the property of the passive film changed. The effects of cold work and sensitization treatment on the characteristics of passive films formed in the three solutions are discussed.  相似文献   

2.
The effects of oxygen, H2SO4 concentration and surface roughness on the electrochemical behaviour of high nitrogen bearing stainless steel (HNS) in acidified 0.5 M NaCl solution were investigated using potentiodynamic polarization method. The results revealed three corrosion potentials indicating an unstable system. The number of the potentials was influenced by H2SO4 concentration. Three potentials existed above 0.011 M H2SO4, two between 0.011 and 0.0065 M H2SO4 and one below 0.0065 M H2SO4. Oxygen increased the number of corrosion potential at 0.005 M H2SO4 + 0.5 M NaCl solution while surface roughness had no noticeable influence on the number of potentials but increased the values of the corrosion potentials and passivation current densities with increase in the surface roughness. The corrosion mechanism has been discussed using the ideal polarization curve models.  相似文献   

3.
The electrochemical corrosion behaviors of Ni-based superalloy nanocrystalline coating (NC) fabricated by a magnetron sputtering technique have been investigated in comparison with cast alloy in 0.25 M Na2SO4 + 0.05 M H2SO4 and 0.5 M NaCl + 0.05 M H2SO4 solution, respectively. Compared with cast alloy, the NC coating had a little higher passive current density in Na2SO4 acidic solution, while it had superior resistance to pitting corrosion in NaCl acidic solution. The semiconductive type of passive film of the NC coating was p-type in both acidic solutions, while, that of cast alloy changed from p-type in Na2SO4 acidic solution to n-type in NaCl acidic solution. XPS results indicated that Cr2O3 was the main component for the passive films of the NC coating as well as those of the cast alloy. No chloride ion was found in the passive film of NC coating while it was in the passive film of cast alloy. The chloride ions adsorbing on the surface of cast alloy incorporated into the passive film, which induced the formation of n-type oxide film. The nanocrystallization of Ni-base superalloy obviously weakened the adsorption of chloride ions on surface, which decreased the susceptibility of pitting corrosion in acidic solution.  相似文献   

4.
Wei Ye  Fuhui Wang 《Electrochimica acta》2006,51(21):4426-4432
Nanocrystallized (NC) 309 stainless steel (309SS) coating has been fabricated on glass substrate by DC magnetron sputtering. The coating, with an average grain size less than 50 nm, had ferritic (bcc) structure rather than the austenitic (fcc) structure of the bulk steel. The electrochemical corrosion behavior of the NC coating and the bulk steel in solutions of 0.25 M Na2SO4 + 0.05 M H2SO4 and 0.5 M NaCl + 0.05 M H2SO4 was investigated by using potentiodynamic polarization, potentiostatic polarization and AC impedance techniques. The results showed that the corrosion behavior of the NC 309SS coating and 309SS bulk steel depended on the composition of the solutions. In the Na2SO4 solution there was only a little difference between the corrosion resistance of the passive films on the NC coating and the bulk steel. However, in the solution with chloride ions, the localized corrosion resistance of 309SS was greatly enhanced by nanocrystallization due to the formation of a compact and stable passive film on the NC coating. The electronic structure of the passive film formed on the NC coating and on the bulk steel was analyzed by means of capacitance measurements, and a corrosion mechanism is proposed.  相似文献   

5.
The effects of hydrogen pre-charging on pitting corrosion resistance and semiconducting nature of passive film formed on two different nitrogen-containing type 316L stainless steel (0.076 and 0.086 wt% N) have been studied. Auger electron spectroscopy (AES) analysis of the alloys after passivation indicated weak nitrogen peak, but the presence of nitrogen and NH3/NH4+ was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis. The results of pitting corrosion in 0.5 M NaCl (pH ≈ 5.7) solution revealed that hydrogen increased the passive current density and significantly reduced the pitting resistance. In 0.3 M H3BO3 + 0.075 M Na2B4O7·10H2O (pH ≈ 8.45) solution, increase in passive current density without affecting the breakdown or transpassive potential was observed for both the alloys. Electrochemical impedance spectroscopy (EIS) measurement after hydrogen pre-charging showed decrease in semi-circle radius of Nyquist plot, and the polarization resistance, RP associated with the resistance of the passive film. The decrease was significant with increasing hydrogen-charging current density (−50 to −100 mA/cm2). The results of the capacitance measurement and Mott–Schottky plots revealed that passive films exhibit n-type and p-type semiconductivity films for both the uncharged and hydrogen charged specimens of the investigated alloys. Doping densities obtained from Mott–Schottky plots increased with hydrogen pre-charging. The overall results indicated that hydrogen pre-charging deteriorated the passive film stability and lowered pitting corrosion resistance. The effects of hydrogen pre-charging on pitting corrosion, passive film and semiconducting properties are discussed in light of the above results.  相似文献   

6.
This paper reports results of potentiodynamic polarization, electrochemical impedance measurements and erosion-corrosion of mild steel in aerated sulfide containing 3.5% NaCl solutions at room temperature. The pitting corrosion behavior was studied in NaCl solution containing 0.001, 0.005 and 0.010 M Na2S, using potentiodynamic polarization and electrochemical impedance spectroscopy. The erosion-corrosion resistance was evaluated after rotating the samples in sulfide polluted NaCl solution for 24 h at a velocity of 300, 600 and 900 ppm using a rotating disc electrode. Results showed that the presence of sulfide ions in NaCl solution resulted in a significant increase in the corrosion attack due to the local acidification caused by iron sulfide formation. The localized replacement of the protective Fe-oxide film by a non-protective iron sulfide film is responsible for the pitting and erosion-corrosion attack. The study concluded that the higher the concentration of sulfide in NaCl solution, the lower the resistance to pitting and erosion-corrosion. Moreover, increasing the solution rotating velocity affects negatively the erosion-corrosion resistance.  相似文献   

7.
The corrosion properties of electrodeposited pure cobalt were investigated in deaerated 0.5 M Na2SO4 solutions at pH 5, 7, 10 and 13 by using polarization techniques. The effect of chloride concentration (0.01 and 0.1 M NaCl) was also studied. The results showed that increasing pH shifted the anodic polarization curves to more negative potentials. At pH 5 and 7, cobalt exhibited active dissolution without any distinctive transition to passivation. However, at pH 10, the metal surface was partially passivated and anodic current increased sharply at approximately −0.2 VSCE and the corroded surface revealed several well-defined pits. On the other hand, at pH 13, a clear passivation region was observed within the potential range of −0.5 to 0.6 VSCE. With increasing chloride concentrations of 0, 0.01, and 0.1 M at pH 10, both the anodic current and the number of pits on the cobalt surface were gradually increased. X-ray photoelectron spectroscopic investigations showed that the cobalt surface was covered mostly with cobalt hydroxide after anodic polarization at pH 10 in 0.1 M NaCl.  相似文献   

8.
The effects of grain size on the electrochemical corrosion behavior of a Ni-based superalloy nanocrystalline (NC) coating fabricated by a magnetron sputtering technique, has been investigated in 0.5 M NaCl + 0.05 M H2SO4 solution. Coatings with grain sizes 10 nm, 50 nm and 100 nm were fabricated on glass and the superalloy substrates. The results indicate that a passive film with porous property, n-type semiconductive property and incorporation of chloride ions formed on the NC coating with 100 nm grain size, which increased the susceptibility to pitting corrosion. The NC coatings with 10 nm and 50 nm grain size formed compact, non-porous and p-type passive films without chloride ions, which improved resistance to pitting corrosion. The smaller grain size of the material decrease the amount of chloride ions adsorbed on the surface and promoted the formation of compact passive film, which significantly increased the material's resistance to pitting corrosion in acidic solution.  相似文献   

9.
Fe-10Cr nanocrystalline (nc) coatings with a grain size of 20-30 nm were synthesized on glass substrates by magnetron sputtering. The corrosion behavior was investigated in 0.05 mol/L H2SO4 + 0.25 mol/L Na2SO4 and 0.05 mol/L H2SO4 + 0.5 mol/L NaCl solution by polarization curves, EIS and Mott-Schottky analysis. The results showed that compared to Fe-10Cr cast alloy, the active dissolution of the coating was accelerated; the passive film contained more Cr and therefore the coating was easier to passivate. The passive films formed on Fe-10Cr nc and cast alloy exhibited n-type semiconducting behavior in acidic solutions without Cl and p-type semiconducting behavior in acidic solutions with Cl. The lower breakdown potential for both materials in the solution with Cl is related to the p-type passive film formed on them. For Fe-10Cr nc, lower donor density and increased Cr content were responsible for the chemical stability of the passive film.  相似文献   

10.
Electroactive conducting polymer composite coatings of polyaniline (PANI) are electrosynthesized on styrene–butadiene rubber (SBR) coated stainless steel electrode by potentiostatic method using aqueous H2SO4 as supporting electrolyte. The protective behaviour of these coatings in different corrosion media (3.5% NaCl and 0.5 M HCl) is investigated using Tafel polarization curves, open circuit potential measurements and electrochemical impedance spectroscopy. The results reveal that SBR/PANI composite coating is much better in corrosion protection than simple PANI coating. The corrosion potential of composite films shifts to more noble values indicating that SBR/PANI composite coating act as an effective corrosion protective layer.  相似文献   

11.
Current oscillatory phenomena have been used to study the effect of nitrates on pitting corrosion of passive iron surfaces in chloride-containing sulfuric acid solutions. From the quasi steady-state current-potential and potentiostatic current-time curves of the Fe | 0.75 M H2SO4+10 mM Cl system it is deduced that at lower potentials nitrates stimulate pitting acting as activators of the oxide dissolution. At higher potentials nitrates act as passivators causing a sudden passivation of Fe during a mass-transport controlled process across a salt film. Current oscillations appear over a wide potential region. The oscillation period as well as the induction period of time occurring before the onset of oscillation, both decrease by increasing the nitrate concentration. The effect of nitrates at lower and higher potentials is discussed in terms of the electrochemical and redox reactions of nitrate ions.  相似文献   

12.
The effect of Cu addition on the electrochemical corrosion behavior of austenitic, ferritic and martensitic stainless steels in both the active and passive state was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy in 0.1 M H2SO4. The semiconducting properties of the passive films were investigated by capacitance measurements by using the Mott-Schottky approach. Cu addition generally improved corrosion resistance and facilitated passivation but did not notably affect the resistance of the passive films. Capacitance results revealed that the passive films behave as n-type and p-type semiconductors at potentials below and above the flatband potential, respectively. Cu addition caused an increase in the donor and acceptor densities, which we have attempted to correlate with the passive film stability.  相似文献   

13.
Corrosion inhibition of mild steel in H3PO4 containing chloride or sulphate ions have been studied using different electrochemical techniques. The corrosion and hydrogen evolution of mild steel alloy in 2 M H3PO4 acid containing 0.5 M NaCl can be effectively inhibited by addition of natural product compound, Thymol (IPMP), of different concentrations. However, in 2 M H3PO4 containing 0.5 M Na2SO4 corrosion cannot be effectively inhibited. The results of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements confirm the synergistic effects which describe the increase in the effectiveness of a corrosion inhibitor in the presence of Cl ions in the corrosive medium. At any temperature, an increase in it leads to an increase of the corrosion rate and hydrogen evolution on mild steel. Polarization and EIS results are in good agreement with each other. The obtained results were confirmed by surface examination using scanning electron microscope.  相似文献   

14.
Poly(3-octyl thiophene) (P3OT) and poly(3-hexylthiophene) (P3HT) dissolved in toluene were deposited onto 1018 carbon steel and corroded in 0.5 M H2SO4. P3OT and P3HT films were chemically deposited by drop casting onto 1018-type carbon steel with two surface finishing, i.e. abraded with 600-emery paper and with alumina (Al2O3) particles of 1.0 μm in diameter (mirror finish). Their corrosion resistance was estimated by using potentiodynamic polarization curves, linear polarization resistance (LPR), and electrochemical impedance spectroscopy, EIS, techniques. In all cases, polymeric films protected the substrate against corrosion, but the protection was improved if the surface was polished with Al2O3 particles of 1.0 μm in diameter. The polymer which gave the best protection was P3HT because the amount of defects was much lower than that for the P3OT films. The polymers did not act only as a barrier layer against aggressive environment, but they improved the passive film properties by decreasing the critical current necessary to passivate the substrate, increasing the pitting potential and broadening the passive interval.  相似文献   

15.
Anodic coatings formed on magnesium alloys by plasma anodization process are mainly used as protective coatings against corrosion. The effects of KOH concentration, anodization time and current density on properties of anodic layers formed on AZ91D magnesium alloy were investigated to obtain coatings with improved corrosion behaviour. The coatings were characterized by scanning electron microscopy (SEM), electron dispersion X-ray spectroscopy (EDX), X-ray diffraction (XRD) and micro-Raman spectroscopy. The film is porous and cracked, mainly composed of magnesium oxide (MgO), but contains all the elements present in the electrolyte and alloy. The corrosion behaviour of anodized Mg alloy was examined by using stationary and dynamic electrochemical techniques in corrosive water. The best corrosion resistance measured by electrochemical methods is obtained in the more concentrated electrolyte 3 M KOH + 0.5 M KF + 0.25 M Na3PO4·12 H2O, with a long anodization time and a low current density. A double electrochemical effects of the anodized layer on the magnesium corrosion is observed: a large inhibition of the cathodic process and a stabilization of a large passivation plateau.  相似文献   

16.
Poly(N-ethylaniline) (PNEA) coatings were grown by potentiodynamic synthesis technique on 304 stainless steel (SS) alloy from 0.1 M of N-ethylaniline (NEA) in 0.3 M oxalic acid solution. Characterization of adhesive and electroactive PNEA coatings was carried out by cyclic voltammetry, FT-IR spectroscopy and scanning electron microscopy (SEM) techniques. The protective properties of PNEA coatings on SS were elucidated using linear anodic potentiodynamic polarization, Tafel and electrochemical impedance spectroscopy (EIS) test techniques, in highly aggressive 0.5 M HCl and 0.5 M NaCl solutions. Linear anodic potentiodynamic polarization test results proved that PNEA coating improved the degree of protection against pitting corrosion in HCl and NaCl solutions. Tafel test results showed that PNEA coating appears to enhancement protection for SS in 0.5 M NaCl and 0.5 M HCl solutions. However, according to long-term EIS results, PNEA coating is better for the protection of SS electrodes during the long immersion period in NaCl compared to that in HCl medium.  相似文献   

17.
Porous-polyaniline coated Pt electrode (PANI/Pt) was electro-synthesized potentiodynamically in 0.1 M aniline + 0.5 M H2SO4 and morphologically characterized by scanning electron microscopy (SEM). Nature of predominant Fe-species in HCl and H2SO4 was checked by UV-vis spectrophotometry. Electrocatalysis of Fe(III)/Fe(II) reaction was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) for three different solution compositions viz. (i) FeCl3/FeCl2 in 1 M HCl, (ii) FeCl3/FeCl2 in 0.5 M H2SO4 and (iii) Fe2(SO4)3/FeSO4 in 0.5 M H2SO4. For different thicknesses of PANI, the peak current increased irrespective of the nature of the Fe-species, but the polarity of the charge on the Fe-species showed great influence on reversibility of electrocatalysis by PANI/Pt. The Donnan interaction of the polyaniline modified electrode for the three compositions was investigated with respect to [Fe(CN)6]3−/H2[Fe(CN)6]2− which are believed to be the predominant species present in K3[Fe(CN)6]/K4[Fe(CN)6] solution in 0.5 M H2SO4. The electrocatalytic performance of PANI/Pt for Fe(III)/Fe(II) redox reaction was found superior in HCl compared to that in H2SO4.  相似文献   

18.
Cyclic voltammetry, current-time-transient measurements, and X-ray photoelectron spectroscopy (XPS) have been used to study the nucleation behavior of electrochemically deposited Cu films on Ru substrates as a function of Ru pre-treatment. Pre-treatment consisted of cathodic polarization in either 1 M H2SO4 or in 1 M H2SO4 + 1 mM KI, followed by sample emersion and placement in a 1 M H2SO4 + 50 mM CuSO4 plating bath. XPS measurements confirmed the presence of adsorbed I on the Ru surface following pre-treatment in the KI/H2SO4 solution. Cyclic voltammogram (CV) data for electrodes either as-received or pre-reduced in H2SO4 and then immersed in the plating solution exhibited a broad peak in the overpotential region consistent with oxide reduction followed by Cu deposition. No underpotential deposition (UPD) feature was observed for these electrodes. In contrast, the sample pre-reduced in I-containing electrolyte exhibited a narrow Cu deposition peak in the overpotential region and a UPD Cu feature centered at 80 mV vs. Ag/AgCl. Current-time-transient (CTT) measurements of Cu deposition on as-received electrodes or electrodes pre-reduced in I-free solution exhibited potential-independent kinetics that are not well described by either progressive or instantaneous nucleation models and which at long times indicate a combination of diffusion and kinetic control. In contrast, CTT measurements of deposition kinetics for samples reduced in I-containing electrolyte exhibited complex, potential-dependent behavior and that at long times indicates diffusion control. XPS results also indicated that the iodine adlayer on Ru reduced in I-containing electrolyte is stable upon polarization to at least −200 mV vs. Ag/AgCl. These data indicate that a protective I adlayer may be deposited on an air-exposed Ru electrode as the oxide surface is electrochemically reduced, and that this layer will inhibit reformation of an oxide during the Cu electroplating process. Therefore, electrochemical pre-treatment in I-containing electrolyte may be of practical utility under industrial conditions for Cu electroplating.  相似文献   

19.
Synthesis of poly(N-methylaniline) (PNMA) on pure iron and Pt electrodes was carried out from aqueous 0.3 M oxalic acid solution containing 0.1 M N-methylaniline (NMA) by potentiodynamic and galvanostatic techniques. It was found that when compared to polyaniline (PAni) and its ring- and N-ethyl-substituted derivatives, PNMA can be electrosynthesized with lower upper scanning potential (upper potential limit, Eupp) of 0.8 V vs. saturated calomel electrode (SCE) on an Fe electrode. PNMA coatings were characterized by electrochemical, scanning electron microscopy (SEM) and FTIR techniques. Linear anodic potentiodynamic polarization results proved that increasing the acidity of the polymerization solution causes more effective protection against corrosion in 0.5 M H2SO4 medium for PNMA. Moreover, PNMA exhibited similar protective properties with PAni under the same corrosion test conditions. Tafel test results reveal that the PNMA coating appears to enhance protection for iron in 0.5 M NaCl and 0.1 M HCl solutions. According to EIS results, the PNMA coating is able to offer protection to Fe electrodes in NaCl compared to that in HCl medium over a long immersion period.  相似文献   

20.
Acetyl thiourea chitosan polymer (ATUCS) has been synthesized and evaluated as corrosion inhibitor. The electrochemical behavior of mild steel in naturally aerated 0.5 M H2SO4 acid containing different concentrations of ATUCS has been studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) measurements and surface examination via scanning electron microscope (SEM) technique. The results of EIS showed that the resistance (Rt) increases slightly with increasing immersion time indicating a slight decrease in corrosion rate of the steel with time. Also, the corrosion rate increases with either increasing temperature or decreasing the polymer concentration as observed by polarization technique. Electrochemical impedance spectroscopy measurements under open-circuit conditions confirmed well polarization results. ATUCS has shown very good inhibition efficiency (IE) in 0.5 M sulphuric acid solution reaches to 94.5% for 0.76 mM concentration. IE of this compound has been found to vary with the concentration of the polymer solution, immersion time and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号