首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. Lai 《Electrochimica acta》2010,55(15):4567-1205
A functional composite as anode materials for lithium-ion batteries, which contains highly dispersed TiO2 nanocrystals in polyaniline matrix and well-defined mesopores, is fabricated by employing a novel one-step approach. The as-prepared mesoporous polyaniline/anatase TiO2 nanocomposite has a high specific surface area of 224 m2 g−1 and a predominant pore size of 3.6 nm. The electrochemical performance of the as-prepared composite as anode material is investigated by cyclic voltammograms and galvanostatic method. The results demonstrate that the polyaniline/anatase nanocomposite provides larger initial discharge capacity of 233 mAh g−1 and good cycle stability at the high current density of 2000 mA g−1. After 70th cycles, the discharge capacity is maintained at 140 mAh g−1. The excellent electrochemical performance of the polyaniline/TiO2 nanocomposite is mainly attributed to its special structure. Furthermore, it is accessible to extend the novel strategy to other polymer/TiO2 composites, and the mesoporous polypyrrole/anatase TiO2 is also successfully fabricated.  相似文献   

2.
From mixed (anatase and rutile) bulk particles, anatase TiO2 nanotubes are synthesized in this study by an alkaline hydrothermal reaction and a consequent annealing at 300-400 °C. The physical and electrochemical properties of the TiO2 nanotube are investigated for use as an anode active material for lithium-ion batteries. Upon the first discharge-charge sweep and simultaneous impedance measurements at local potentials, this study shows that interfacial resistance decreases significantly when passing lithium ions through a solid electrolyte interface layer at the lithium insertion/deinsertion plateaus of 1.75/2.0 V, corresponding to the redox potentials of anatase TiO2 nanotubes. For an anatase TiO2 nanotube containing minor TiO2(B) phase obtained after annealing at 300 °C, the high-rate capability can be strongly enhanced by an isotropic dispersion of TiO2 nanotubes to yield a discharge capacity higher than 150 mAh g−1, even upon 100 cycles of 10 C-rate discharge-charge operations. This is suitable for use as a high-power anode material for lithium-ion batteries.  相似文献   

3.
To achieve a high-energy-density lithium electrode, high-density LiFePO4/C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO4 as a precursor, glucose as a C source, and Li2CO3 as a Li source, in a pipe furnace under an atmosphere of 5% H2-95% N2. The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO4/carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO4/carbon composite powder with a carbon content of 7% reached 1.80 g m−3. The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g−1, respectively, with a volume capacity of 300.6 mAh cm−3, at a 0.1C rate. At a rate of 5C, the LiFePO4/carbon composite shows a high discharge capacity of 98.3 mAh g−1 and a volume capacity of 176.94 mAh cm−3.  相似文献   

4.
Anatase titania nanotube arrays were fabricated by means of anodization of Ti foil and annealed at 400 °C in respective CO and N2 gases for 3 h. Electrochemical impendence spectroscopy study showed that CO annealed arrays possessed a noticeably lower charge-transfer resistance as compared with arrays annealed in N2 gas under otherwise the same conditions. TiO2 nanotube arrays annealed in CO possessed much improved lithium ion intercalation capacity and rate capability than N2 annealed samples. At a high charge/discharge current density of 320 mA g−1, the initial discharge capacity in CO annealed arrays was found to be as high as 223 mAh g−1, 30% higher than N2 annealed arrays, ∼164 mAh g−1. After 50 charge/discharge cycles, the discharge capacity in CO annealed arrays remained at ∼179 mAh g−1. The improved intercalation capacity and rate capability could be attributed to the presence of surface defects like Ti-C species and Ti3+ groups with oxygen vacancies, which not only improved the charge-transfer conductivity of the arrays but also possibly promoted phase transition.  相似文献   

5.
LiNiO2 was prepared by solid state reaction, and LiNiO2 was mixed with 1-, 2-, or 5 wt% TiO2 or ZnO for the preparation of cathodes for a lithium ion battery. The electrochemical properties of the cathodes were investigated and the effects of the addition of TiO2 or ZnO were discussed. The voltage vs. capacity curves for charge and discharge at different numbers of cycles for LiNiO2, 2 wt% TiO2-added LiNiO2, and 2 wt% ZnO2-added LiNiO2 showed that in all the samples the first discharge capacity is much smaller than the first charge capacity. The addition of TiO2 or ZnO decreased the discharge capacities, but improved the cycling performance. The discharge capacities of LiNiO2 and 2 wt% TiO2-added LiNiO2 decreased as the number of cycles increased. However, the discharge capacity of 2 wt% ZnO-added LiNiO2 increased overall as the number of cycles increased. The −dx/|dV| vs. voltage curves for the 1st and 2nd cycles of 0, 1-, 2-, or 5 wt% TiO2 or ZnO-added LiNiO2 showed that all the samples underwent four phase transitions during charging and discharging.  相似文献   

6.
Carbon coated Li3V2(PO4)3 cathode material was prepared by a poly(vinyl alcohol) (PVA) assisted sol-gel method. PVA was used both as the gelating agent and the carbon source. XRD analysis showed that the material was well crystallized. The particle size of the material was ranged between 200 and 500 nm. HRTEM revealed that the material was covered by a uniform surface carbon layer with a thickness of 80 Å. The existence of surface carbon layer was further confirmed by Raman scattering. The electrochemical properties of the material were investigated by charge-discharge cycling, CV and EIS techniques. The material showed good cycling performance, which had a reversible discharge capacity of 100 mAh g−1 when cycled at 1 C rate. The apparent Li+ diffusion coefficients of the material ranged between 9.5 × 10−10 and 0.9 × 10−10 cm2 s−1, which were larger than those of olivine LiFePO4. The large lithium diffusion coefficient of Li3V2(PO4)3 has been attributed to its special NASICON-type structure.  相似文献   

7.
In order to get homogeneous layered oxide Li[Ni1/3Mn1/3Co1/3]O2 as a lithium insertion positive electrode material, we applied the metal acetates decomposition method. The oxide compounds were calcined at various temperatures, which results in greater difference in morphological (shape, particle size and specific surface area) and the electrochemical (first charge profile, reversible capacity and rate capability) differences. The Li[Ni1/3Mn1/3Co1/3]O2 powders were characterized by means of X-ray diffraction (XRD), charge/discharge cycling, cyclic voltammetry and SEM. XRD experiment revealed that the layered Li[Ni1/3Mn1/3Co1/3]O2 material can be best synthesized at temperature of 800 °C. In that synthesized temperature, the sample showed high discharge capacity of 190 mAh g−1 as well as stable cycling performance at a current density of 0.2 mA cm−2 in the voltage range 2.3-4.6 V. The reversible capacity after 100 cycles is more than 190 mAh g−1 at room temperature.  相似文献   

8.
The TiO2 support materials were synthesized by a chemical vapor condensation (CVC) method and the subsequent MnOx/TiO2 catalysts were prepared by an impregnation method. Catalytic oxidation of toluene on the MnOx/TiO2 catalysts was examined with ozone. These catalysts had a smaller particle size (9.1 nm) and a higher surface area (299.5 m2 g−1) compared to MnOx/P25-TiO2 catalysts. The catalysts show high catalytic activity with the ozone oxidation of toluene even at low temperature. As a result, the synthesized support material by the CVC method gave more active catalyst.  相似文献   

9.
Nanosized TiO2 powder with an average primary size of ∼20 nm and surface area of ∼50 m2/g (Aeroxide® P25, Degussa-Evonik, Germany) was used as starting material. A colloidal titania suspension from the same supplier was also used (W740X). The dispersing conditions were studied as a function of pH, dispersant content, and solids loading. Well-dispersed TiO2 nanosuspensions with solids contents up to 30 vol.% (62 wt%) were obtained by dispersing the powder with 4 wt% PAA. Suspensions with solids contents as high as 35 vol.% were prepared by adding the TiO2 nanoparticles to the TiO2 colloidal suspension under optimised dispersing conditions.TiO2 powder reconstitution was performed by spray drying both types of nanosuspensions to obtain free-flowing micrometre-sized nanostructured granules. The spray-dried nanostructured TiO2 granules were deposited on austenitic stainless steel coupons using atmospheric plasma spraying. Coating microstructure and phase composition were characterised using scanning electron microscopy and X-ray diffraction techniques.  相似文献   

10.
Sub-micro spinel-structured LiMn1.5Ni0.5O4 material was prepared by a spray-drying method. The electrochemical properties of LiMn1.5Ni0.5O4 were investigated using Li ion model cells, Li/LiPF6 (EC + DMC)/LiMn1.5Ni0.5O4. It was found that the first reversible capacity was about 132 mAh g−1 in the voltage range of 3.60-4.95 V. Ex situ X-ray diffraction (XRD) analysis had been used to characterize the first charge/discharge process of the LiMn1.5Ni0.5O4 electrode. The result suggested that the material configuration maintained invariability. At room temperature, on cycling in high-voltage range (4.50-4.95 V) and low-voltage range (3.60-4.50 V), the discharge capacity of the material was about 100 and 25 mAh g−1, respectively, and the spinel LiMn1.5Ni0.5O4 exhibited good cycle ability in both voltage ranges. However, at high temperature, the material showed different electrochemical characteristics. Excellent electrochemical performance and low material cost make this spinel compound an attractive cathode for advanced lithium ion batteries.  相似文献   

11.
C. Deng  L. Liu  K. Sun  D. Sun 《Electrochimica acta》2008,53(5):2441-2447
The layered Li[Ni1/3Co1/3Mn1/3]O2 powder with good crystalline and spherical shape was prepared by hydroxide co-precipitation method. The effects of pH value, NH4OH amount, calcination temperature and extra Li amount on the morphology, structure and electrochemical properties of the cathode material were investigated in detail. SEM results indicate that pH value affected both the morphology and the property of the cathode material, and the highest discharge capacity in the first cycle of 163 mAh g−1 (2.8-4.3 V) was obtained at pH value was 12. On the contrary, the NH4OH amount, which was used as a chelating agent, only affected the particle size distribution of the material. The calcination temperatures caused great difference in the structure and property of layered Li[Ni1/3Co1/3Mn1/3]O2, and the best electrochemical properties were obtained at the calcination temperature of 800 °C. Extra Li amount not only caused difference in the material structure, but also affected their electrochemical properties. With increasing Li amount, the lattice parameters (a and c) increased monotonously, and the highest first cycle coulombic efficiency (the ratio of discharge capacity to charge capacity in the first cycle) was obtained with the Li/M of 1.10. Therefore, the optimum synthetic conditions for the hydroxide co-precipitation reaction were: pH value was 12, NH4OH amount was 0.36 mol L−1, calcination temperature was 800 °C and the Li/M molar ratio was 1.10.  相似文献   

12.
LiNiO2 was synthesized by the combustion method with various excess lithium amount z in Li1 + zNiO2 (z = 0.04, 0.08, 0.10, 0.12, and 0.15). The sample with z = 0.10 has the largest first discharge capacity of 195 mAh/g at 0.1 C rate and voltage range 2.7-4.4 V with the weight ratio of active material:acetylene black:binder = 85:10:5. The LiNiO2 cathodes, in which the excess lithium amount z for the synthesis of LiNiO2 was 0.10, were fabricated with various weight ratios of active material:acetylene black:binder (85:10:5, 85:12:3, and 90:7:3). The cathode with the ratio of active material:acetylene black:binder 85:10:5 has the best electrochemical properties. The variation, with C-rate, of discharge capacity vs. number of cycles curve for the LiNiO2 cathode with the weight ratio of active material:acetylene black:binder = 85:10:5 was investigated. At 0.1 C rate, the LiNiO2 cathode has the largest first discharge capacity, the discharge capacity degradation rate of 0.70 mAh/g/cycle and a discharge capacity at n = 50 of 134 mAh/g.  相似文献   

13.
Ramsdellite Li2Ti3O7 was first synthesized via sol-gel process with good crystallity of an average particle size of 0.175 μm. The product was thoroughly investigated as a lithium intercalation compound, and as an active anode material in asymmetric supercapacitors coupling with activated carbon as cathode. Lithium intercalation reactions were found occurring at 1.32 and 1.62 V versus Li/Li+, respectively. A reversible specific capacity of 150 mA h g−1 at 1C was obtained on Li2Ti3O7 electrode in a nonaqueous electrolyte. The charge current was found to strongly influence the anodic discharge capacity in the asymmetric cell. The capacity retention at 10C charge-discharge rate was found to be 75.9% in comparison with that at 1C.  相似文献   

14.
Li2FeSiO4/carbon/carbon nano-tubes (Li2FeSiO4/C/CNTs) and Li2FeSiO4/carbon (Li2FeSiO4/C) composites were synthesized by a traditional solid-state reaction method and characterized comparatively by X-ray diffraction, scanning electron microscopy, BET surface area measurement, galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results revealed that the Li2FeSiO4/C/CNT composite exhibited much better rate performance in comparison with the Li2FeSiO4/C composite. At 0.2 C, 5 C and 10 C, the former composite electrode delivered a discharge capacity of 142 mAh g−1, 95 mAh g−1, 80 mAh g−1, respectively, and after 100 cycles at 1 C, the discharge capacity remained 95.1% of its initial value.  相似文献   

15.
A simple and effective method, ethylene glycol-assisted co-precipitation method, has been employed to synthesize LiNi0.5Mn1.5O4 spinel. As a chelating agent, ethylene glycol can realize the homogenous distributions of metal ions at the atomic scale and prevent the growth of LiNi0.5Mn1.5O4 particles. XRD reveals that the prepared material is a pure-phase cubic spinel structure (Fd3m) without any impurities. SEM images show that it has an agglomerate structure with the primary particle size of less than 100 nm. Electrochemical tests demonstrate that the as-prepared LiNi0.5Mn1.5O4 possesses high capacity and excellent rate capability. At 0.1 C rate, it shows a discharge capacity of 137 mAh g−1 which is about 93.4% of the theoretical capacity (146.7 mAh g−1). At the high rate of 5 C, it can still deliver a discharge capacity of 117 mAh g−1 with excellent capacity retention rate of more than 95% after 50 cycles. These results show that the as-prepared LiNi0.5Mn1.5O4 is a promising cathode material for high power Li-ion batteries.  相似文献   

16.
Meldola blue immobilized on a new SiO2/TiO2/graphite composite was applied in the electrocatalytic oxidation of NADH. The materials were prepared by the sol-gel processing method and characterized by several techniques including scanning electronic microscopy coupled to energy dispersive spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electronic microscopy (HRTEM). Si and Ti mapping profiles on the surface showed a homogeneous distribution of the components. Ti2p binding energy peaks indicate that the formation of Si-O-Ti linkage is presumably the responsible for the high rigidity of the matrices. The good electrical conductivity presented by the composites (5 and 11 S cm−1) can be related to a homogeneous distribution of graphite particles observed by TEM. After the materials characterization, a SiO2/TiO2/graphite electrode was prepared and some chemical modifications were performed on its surface to promote the adsorption of meldola blue. The resulting system presented electrocatalytic properties toward the oxidation of NADH, decreasing the oxidation potential to −120 mV. The proposed sensor showed a wide linear response range from 0.018 to 7.29 mmol l−1 and limit of detection of 0.008 mmol l−1. SiO2/TiO2/graphite has shown to be a promising material to be used as a suitable support in the construction of new electrochemical sensors.  相似文献   

17.
Highly crystalline spinel LiMn2O4 was successfully synthesized by annealing lithiated MnO2 at a relative low temperature of 600 °C, in which the lithiated MnO2 was prepared by chemical lithiation of the electrolytic manganese dioxide (EMD) and LiI. The LiI/MnO2 ratio and the annealing temperature were optimized to obtain the pure phase LiMn2O4. With the LiI/MnO2 molar ratio of 0.75, and annealing temperature of 600 °C, the resulting compounds showed a high initial discharge capacity of 127 mAh g−1 at a current rate of 40 mAh g−1. Moreover, it exhibited excellent cycling and high rate capability, maintaining 90% of its initial capacity after 100 charge-discharge cycles, at a discharge rate of 5 C, it kept more than 85% of the reversible capacity compared with that of 0.1 C.  相似文献   

18.
Layered LiNi0.6Co0.2Mn0.2O2 materials were synthesized at different sintering temperatures using spray-drying precursor with molar ratio of Li/Me = 1.04 (Me = transition metals). The influences of sintering temperature on crystal structure, morphology and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 materials have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and charge-discharge test. As a result, material synthesized at 850 °C has excellent electrochemical performance, delivering an initial discharge capacity of 173.1 mAh g− 1 between 2.8 and 4.3 V at a current density of 16 mA g− 1 and exhibiting good cycling performance.  相似文献   

19.
Hun-Gi Jung 《Electrochimica acta》2010,55(15):4637-4641
Spherical pure anatase TiO2 spheres with a mesoporous structure and high surface area of up to 116.5 m2 g−1 were prepared by a simple urea-assisted hydrothermal process and investigated as dye-sensitized solar-cell electrodes. Although the particle diameters of the prepared TiO2 spheres ranged from 0.4 to 1.3 μm, due to the high specific surface area, mesoporous TiO2 sphere electrode was obtained with enhanced light harvesting and a larger amount of dye loading. An overall light conversion efficiency of 7.54% under illumination of simulated AM 1.5G solar light (100 mW cm−2) was achieved using the mesoporous TiO2 spheres electrode, which was significantly higher than a commercial Degussa P25 TiO2 nanocrystals electrode (5.69%).  相似文献   

20.
Synthesis, electrochemical, and structural properties of LiNi0.8Co0.15Al0.05O2 cathodes prepared by TiO2 nanoparticles coating on a Ni0.8Co0.15Al0.05(OH)2 precursor have been investigated by the variation of coating concentration and annealing temperature. TiO2-coated cathodes showed that Ti elements were distributed throughout the particles. Among the coated cathodes, the 0.6 wt% TiO2-coated cathode prepared by annealing at 750 °C for 20 h exhibited the highest reversible capacity of 176 mAh g−1 and capacity retention of 92% after 40 cycles at a rate of 1C (=190 mA g−1). On the other hand, an uncoated cathode showed a reversible first discharge capacity of 186 mAh g−1 and the same capacity retention value to the TiO2-coated sample at a 1C rate. However, under a 1C rate cycling at 60 °C for 30 cycles, the uncoated sample showed a reversible capacity of 40 mAh g−1, while a TiO2-coated one showed 71 mAh g−1. This significant improvement of the coated sample was due to the formation of a possible solid solution between TiO2 and LiNi0.8Co0.15Al0.05O2. This effect was more evident upon annealing the charged sample while increasing the annealing temperature, and at 400 °C, the coated one showed a more suppressed formation of the NiO phase from the spinel LiNi2O4 phase than the uncoated sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号