首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composite cathode materials of LiFePO4/C were synthesized by spray-drying and post-annealing method. The crystalline structure and morphology of products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The charge-discharge kinetics of LiFePO4/C electrode was investigated using electrochemical impedance spectroscopy (EIS). The results show that the increment of the resistance has a close relation to the appearance of the FePO4 phase during charge-discharge course, and that the ohmic resistance, charge transfer resistance and lithium-ion diffusion coefficients of the LiFePO4/C electrode do not change much by extended cycling tests, implying a relatively superior cyclability of the battery. The effect of cell temperature on the electrochemical reaction behaviors of LiFePO4/C electrode was also investigated using the EIS. It is confirmed that the effect of the cell temperature on the impedance results mainly from the enhancement of the lithium-ion diffusion at elevated temperatures.  相似文献   

2.
LiFePO4/C was synthesized by the method of solid-liquid reaction milling, using FeCl3·6H2O, Li2CO3 and (NH4)2HPO4 and glucose, which was used as reductant (carbon source). The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), TG-DTA analysis, infrared absorption carbon-sulfur analysis and electrochemical performance test. The sample synthesized at 680 °C for 8 h showed, at initial discharge, a capacity of 155.8, 153.2, 148.5, 132.7 mAh g− 1 at 0.2 °C, 0.5 °C, 1 °C and 3 °C rate respectively. The sample also showed an excellent capacity retention as there was no significant capacity fade after 10 cycles.  相似文献   

3.
An effective method for synthesizing a one-dimensional nanostructure to improve the rate performance of LiFePO4 as the cathode material for Li-ion power batteries is described. The crystal structure, composition, and morphology of the prepared LiFePO4 were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM), respectively. The reaction mechanism of the LiFePO4 nanorods is discussed herein. Electrodes consisting of the LiFePO4 nanorods have better rate discharge capacities over a potential range of 2.5-4.2 V (vs. Li+/Li). These results are attributed to the shorter distance of electron transport and the fact that ion diffusion in the electrode material is limited by the nanorod radius. Our results indicate that the prepared LiFePO4 nanorods are promising cathode materials for Li-ion power batteries. This new process for synthesizing nanorod products from nanorod raw material can be extended to the preparation of other one-dimensional materials.  相似文献   

4.
Spray drying and carbothermal method was employed to investigate reaction mechanism and electrochemical performance of LiFePO4/C cathode by using different carbon sources. Micro-structural variations of LiFePO4/C precursors using different carbon sources were studied by Thermo-gravimetric (TG)/Differential Thermal Analysis (DTA). The LiFePO4/C samples were characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) absorption spectroscopy. The results indicated that the crystallization temperature of LiFePO4 was 453 °C, while the transform temperature was 539 °C from Li3Fe2(PO4)3 to LiFePO4. At 840 °C, LiFePO4/C sample with an excess of impurity phase Fe2P gave much poorer electrochemical performance. The severe decomposition of LiFePO4/C happened at 938 °C and generated impurity phases Li4P2O7 and Fe2P. The clear discharge platform of Fe2P emerged at around 2.2 V.  相似文献   

5.
In this work, LiFePO4/C composites were prepared in hydrothermal system by using iron gluconate as iron source, and two feeding sequences during the preparation were comparatively studied. The morphology, crystal structure and charge–discharge performance of the prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and galvanostatic charge–discharge testing. The results showed that the feeding sequences and iron gluconate seriously affected the microstructures and electrochemical properties of the resulting LiFePO4 cathodes in lithium ion batteries. The spindle-shaped LiFePO4 with hierarchical microporous structure self-assembled by nanoparticles has been successfully synthesized by synthesis route B. In addition, the cell performance of the synthesized LiFePO4 by synthesis route B was better than that of LiFePO4 by synthesis route A. Specially at high rates, the superior rate performance of the spindle-shaped LiFePO4/C microstructure (LFP/C-B) was revealed. And special reversible capacities of ∼118 and ∼95 mAh g−1 were obtained at rates of 2 C and 5 C, comparing to ∼96 and ∼68 mAh g−1 for LFP/C-A.  相似文献   

6.
LiFePO4/C composites were synthesized by two methods using home-made amorphous nano-FePO4 as the iron precursor and soluble starch, sucrose, citric acid, and resorcinol-formaldehyde (RF) polymer as four carbon precursors, respectively. The crystalline structures, morphologies, compositions, electrochemical performances of the prepared powders were investigated with XRD, TEM, Raman, and cyclic voltammogram method. The results showed that employing soluble starch and sucrose as the carbon precursors resulted in a deficient carbon coating on the surface of LiFePO4 particle, but employing citric acid and RF polymer as the carbon precursors realized a uniform carbon coating on the surface of LiFePO4 particle, and the corresponding thicknesses of the uniform carbon films are 2.5 nm and 4.5 nm, respectively. When RF polymer was used as the carbon precursor, the material showed the highest initial discharge capacity (138.4 mAh g− 1 at 0.2 C at room temperature) and the best rate performance among the four materials.  相似文献   

7.
Amorphous hydrated iron (III) phosphate has been synthesized by a coordinate precipitation method from equimolecular Fe(NO3)3 and (NH4)2HPO4 solutions at an elevated temperature. Hydrated iron (III) phosphate samples and the corresponding LiFePO4/C products were characterized by XRD and SEM. The electrochemical behavior was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The LiFePO4/C fabricated from as-synthesized FePO4 delivered discharge capacities of 162.5, 147.3, 133.0, 114.7, 97.2, 91.3 and 88.5 mAh g−1 at rates of 0.1C, 0.2C, 0.5C, 1C, 2C, 3C and 4C with satisfactory capacity retention, respectively.  相似文献   

8.
The MoO2 and carbon co-coated LiFePO4 cathode materials were synthesized by a combined technique of solid state synthesis and the sol–gel method. Phase compositions and microstructures of the products were characterized by X-ray powder diffraction (XRD), Raman, SEM and TEM. Results indicate that MoO2 can sufficiently coat on the LiFePO4 surface and does not alter LiFePO4 crystal structure, and the existence of MoO2 increases the graphitization degree of carbon. SEM and TEM images reveal that MoO2 presence has little impact on LiFePO4 particle size. The electrochemical behavior of cathode materials was analyzed using galvanostatic measurement and cyclic voltammetry (CV). The results show that the existence of MoO2 improves electrochemical performance of LiFePO4 cathode material in specific capability and low-temperature behavior. The apparent lithium ion diffusion coefficient increases with MoO2 content and maximizes around the MoO2 content of x=5 wt%. It has been had further proved that the higher electronic conductivity of MoO2 and carbon enhances the lithium ion transport to improve the electrochemical performance of LiFePO4 cathode materials.  相似文献   

9.
Carbon-dispersed LiFePO4 materials were routinely prepared by heating metal-salt-containing pastes of organogels to temperatures at 300 and 700 °C to benefit the intrinsic conductivity, and we ultimately discerned the optimized carbon content, 4.55 wt%. Carbon doping will decrease tap density of prepared cathode material and then bring about electrode preparing difficulty, so we tried different kinds of organogels to make out the densest carbon composite. They were polyacrylamide (PAM), sugar and phenolic resin. The most excellent pyrolyzed PAM paste was found increasingly electrochemical reversible, exhibiting 113.2 mAh/g at C/6 and 95 mAh/g at C/3. And we found a good cycliability of 95 mAh/g at 0.2 mA cm−2 at room temperature. Seen from atomic force microscopy, this composite was far more different from other pyrolyzed pastes in morphology, which contained judicious designed hiberarchy and highly dispersed nanoparticles. Decreased 2θ in XRD spectra also showed the varied cell parameters, though no exact figures of the varied cell parameters could be given due to a potential existence of an unknown second phase with electrochemical activity.  相似文献   

10.
The electroactive LiFePO4/C nano-composite has been synthesized by an emulsion drying method. During burning-out the oily emulsion precipitates in an air-limited atmosphere at 300 °C, amorphous or low crystalline carbon was generated along with releasing carbon oxide gases, and trivalent iron as a cheap starting material was immediately reduced to the divalent one at this stage as confirmed by X-ray photoelectron spectroscopy, leading to a low crystalline LiFePO4/C composite. Heat-treatment of the low crystalline LiFePO4/C in an Ar atmosphere resulted in a well-ordered olivine structure, as refined by Rietveld refinement of the X-ray diffraction pattern. From secondary electron microscopic and scanning transmission electron microscopic observations with the corresponding elemental mapping images of iron and phosphorous, it was found that the LiFePO4 powders are modified by fine carbon. The in situ formation of the nano-sized carbon during crystallization of LiFePO4 brought about two advantages: (i) an optimized particle size of LiFePO4, and (ii) a uniform distribution of fine carbon in the product. These effects of the fine carbon on LiFePO4/C composite led to high capacity retention upon cycling at 25 and 50 °C and high rate capability, resulting from a great enhancement of electric conductivity as high as 10−4 S cm−1. That is, the obtained capacity was higher than 90 mAh (g-phosphate)−1 by applying a higher current density of about 1000 mA g−1 (11 C) at 50 °C.  相似文献   

11.
A water quenching (WQ) method was developed to synthesize LiFePO4 and C-LiFePO4. Our results indicate that this synthesis method ensures improved electrochemical activity and small crystal grain size. The synthetic conditions were optimized using orthogonal experiments. The LiFePO4 sample prepared at the optimized condition showed a maximum discharge capacity of 149.8 mAh g−1 at a C/10 rate. C-LiFePO4 with a low carbon content of 0.93% and a high discharge specific capacity of 163.8 mAh g−1 has also been obtained using this method. Water quenching treatment shows outstanding improvement of the electrochemical performance of LiFePO4.  相似文献   

12.
Electrochemical properties of LiFePO4/carbon composites were investigated to achieve a high-rate lithium electrode performance. LiFePO4/carbon composites were synthesized by a hydrothermal reaction of a solution of FeSO4·7H2O, H3PO4, and LiOH·H2O mixed with carbon powders under nitrogen atmosphere followed by annealing under 1% H2–99% Ar atmosphere. Particle size of the obtained LiFePO4/carbon composites observed by scanning electron microscopy was less than 100 nm. At a high current density of 1000 mA g−1, the LiFePO4/carbon composites showed a high discharge capacity of 113 mA h g−1, and a flat discharge potential plateau was observed around 3.4 V. The discharge capacity at the high current density, 85% of that at a low current density of 30 mA g−1, is a quite high value for LiFePO4 cathodes. Homogeneous microstructure consisting of small particles contributed to the high-rate properties of the LiFePO4/carbon composites.  相似文献   

13.
A simple high-energy ball milling combined with spray-drying method has been developed to synthesize LiFePO4/carbon composite. This material delivers an improved tap density of 1.3 g/cm3 and a high electronic conductivity of 10−2 to 10−3 S/cm. The electrochemical performance, which is especially notable for its high-rate performance, is excellent. The discharge capacities are as high as 109 mAh/g at the current density of 1100 mA/g (about 6.5C rate) and 94 mAh/g at the current density of 1900 mA/g (about 11C rate). At the high current density of 1700 mA/g (10C rate), it exhibits a long-term cyclability, retaining over 92% of its original discharge capacity beyond 2400 cycles. Therefore, the as-prepared LiFePO4/carbon composite cathode material is capable of such large-scale applications as hybrid and plug-in hybrid electric vehicles.  相似文献   

14.
Sulfolane (also referred to as tetramethylene sulfone, TMS) containing LiPF6 and vinylene carbonate (VC) was tested as a non-flammable electrolyte for a graphite |LiFePO4 lithium-ion battery. Charging/discharging capacity of the LiFePO4 electrode was ca. 150 mAh g−1 (VC content 5 wt%). The capacity of the graphite electrode after 10 cycles establishes at the level of ca. 350 mAh g−1 (C/10 rate). In the case of the full graphite |1 M LiPF6 + TMS + VC 10 wt% |LiFePO4 cell, both charging and discharging capacity (referred to cathode mass) stabilized at a value of ca. 120 mAh g−1. Exchange current density for Li+ reduction on metallic lithium, estimated from electrochemical impedance spectroscopy (EIS) experiments, was jo(Li/Li+) = 8.15 × 10−4 A cm−2. Moreover, EIS suggests formation of the solid electrolyte interface (SEI) on lithium, lithiated graphite and LiFePO4 electrodes, protecting them from further corrosion in contact with the liquid electrolyte. Scanning electron microscopy (SEM) images of pristine electrodes and those taken after electrochemical cycling showed changes which may be interpreted as a result of SEI formation. No graphite exfoliation was observed. The main decomposition peak of the LiPF6 + TMS + VC electrolyte (TG/DTA experiment) was present at ca. 275 °C. The LiFePO4(solid) + 1 M LiPF6 + TMS + 10 wt% VC system shows a flash point of ca. 150 °C. This was much higher in comparison to that characteristic of a classical LiFePO4 (solid) + 1 M LiPF6 + 50 wt% EC + 50 wt% DMC system (Tf ≈ 37 °C).  相似文献   

15.
Pure, nano-sized LiFePO4 and LiFePO4/C cathode materials are synthesized by spray-drying and post-annealing method. The influence of the sintering temperature and carbon coating on the structure, particle size, morphology and electrochemical performance of LiFePO4 cathode material is investigated. The optimum processing conditions are found to be thermal treatment for 10 h at 600 °C. Compared with LiFePO4, LiFePO4/C particles are smaller in size due to the inhibition of crystal growth to a great extent by the presence of carbon in the reaction mixture. And that the LiFePO4/C composite coated with 3.81 wt.% carbon exhibits the best electrode properties with discharge capacities of 139.4, 137.2, 133.5 and 127.3 mAh g−1 at C/5, 1C, 5C and 10C rates, respectively. In addition, it shows excellent cycle stability at different current densities. Even after 50 cycles at the high current density of 10C, a discharge capacity of 117.7 mAh g−1 is obtained (92.4% of its initial value) with only a low capacity fading of 0.15% per cycle.  相似文献   

16.
The effect of CeO2 coating on LiFePO4/C cathode material has been investigated. The crystalline structure and morphology of the synthesized powders have been characterized by XRD, SEM, TEM and their electrochemical performances both at room temperature and low temperature are evaluated by CV, EIS and galvanostatic charge/discharge tests. It is found that, nano-CeO2 particles distribute on the surface of LiFePO4 without destroying the crystal structure of the bulk material. The CeO2-coated LiFePO4/C cathode material shows improved lithium insertion/extraction capacity and electrode kinetics, especially at high rates and low temperature. At −20 °C, the CeO2-coated material delivers discharge capacity of 99.7 mAh/g at 0.1C rate and the capacity retention of 98.6% is obtained after 30 cycles at various charge/discharge rates. The results indicate that the surface treatment should be an effective way to improve the comprehensive properties of the cathode materials for lithium ion batteries.  相似文献   

17.
Co-doped Li3V2−xCox(PO4)3/C (x = 0.00, 0.03, 0.05, 0.10, 0.13 or 0.15) compounds were prepared via a solid-state reaction. The Rietveld refinement results indicated that single-phase Li3V2−xCox(PO4)3/C (0 ≤ x ≤ 0.15) with a monoclinic structure was obtained. The X-ray photoelectron spectroscopy (XPS) analysis revealed that the cobalt is present in the +2 oxidation state in Li3V2−xCox(PO4)3. XPS studies also revealed that V4+ and V3+ ions were present in the Co2+-doped system. The initial specific capacity decreased as the Co-doping content increased, increasing monotonically with Co content for x > 0.10. Differential capacity curves of Li3V2−xCox(PO4)3/C compounds showed that the voltage peaks associated with the extraction of three Li+ ions shifted to higher voltages with an increase in Co content, and when the Co2+-doping content reached 0.15, the peak positions returned to those of the unsubstituted Li3V2(PO4)3 phase. For the Li3V1.85Co0.15(PO4)3/C compound, the initial capacity was 163.3 mAh/g (109.4% of the initial capacity of the undoped Li3V2(PO4)3) and 73.4% capacity retention was observed after 50 cycles at a 0.1 C charge/discharge rate. The doping of Co2+into V sites should be favorable for the structural stability of Li3V2−xCox(PO4)3/C compounds and so moderate the volume changes (expansion/contraction) seen during the reversible Li+ extraction/insertion, thus resulting in the improvement of cell cycling ability.  相似文献   

18.
Cr-doped Li3V2−xCrx(PO4)3/C (x = 0, 0.05, 0.1, 0.2, 0.5, 1) compounds have been prepared using sol–gel method. The Rietveld refinement results indicate that single-phase Li3V2−xCrx(PO4)3/C with monoclinic structure can be obtained. Although the initial specific capacity decreased with Cr content at a lower current rate, both cycle performance and rate capability have excited improvement with moderate Cr-doping content in Li3V2−xCrx(PO4)3/C. Li3V1.9Cr0.1(PO4)3/C compound presents an initial capacity of 171.4 mAh g−1 and 78.6% capacity retention after 100 cycles at 0.2C rate. At 4C rate, the Li3V1.9Cr0.1(PO4)3/C can give an initial capacity of 130.2 mAh g−1 and 10.8% capacity loss after 100 cycles where the Li3V2(PO4)3/C presents the initial capacity of 127.4 mAh g−1 and capacity loss of 14.9%. Enhanced rate and cyclic capability may be attributed to the optimizing particle size, carbon coating quality, and structural stability during the proper amount of Cr-doping (x = 0.1) in V sites.  相似文献   

19.
Carbon coating and iron phosphides of high electron conductivity were introduced into the LiFePO4 materials which were derived via a sol-gel method in order to improve the high discharge rate performance. The start constituents were FeC2O4·2H2O, LiOH·H2O, NH4H2PO4 and ethylene glycol. Effects of the calcination temperature and the ethylene glycol on the structure and the electrochemical performance of the LiFePO4 materials were investigated. Structure analyses showed that the addition of ethylene glycol caused an obvious decrease in the particle size of LiFePO4. Calcination temperature and ethylene glycol jointly affected the formation of iron phosphides. Combining the electrochemical testing, it was found that, at low discharge rate, small particle size and high content of LiFePO4 were much important for the capacity rather than the iron phosphides, and relative high content of Fe2P (e.g. 8 wt.%) even worsened the capacity. However, with the increase of the discharge rate, the high electron conductive iron phosphides turned to play important role on the capacity. Fe2P effectively increased both the reaction and diffusion kinetics and hence enhanced the utilization efficiency of the LiFePO4 at high discharge rate. Combining relative small particle size, even 2 wt.% of iron phosphides could improve the high rate performance of LiFePO4/C significantly.  相似文献   

20.
Ke Wang 《Electrochimica acta》2009,54(10):2861-2907
LiFePO4/C composite was synthesized by mechanical activation using sucrose as carbon source. High-energy ball milling facilitated phase formation during thermal treatment. TG-DSC and TPR experiments demonstrated sucrose was converted to CHx intermediate before completely decomposed to carbon. Ball milling time, calcination temperature and dwelling time all had significant impact on the discharge capacity and rate performance of the resulted power. The optimal process parameters are high-energy ball milling for 2-4 h followed by thermal treatment at 700 °C for 20 h. The product showed a capacity of 174 mAh/g at 0.1C rate and around 117 mAh/g at 20C rate with the capacity fade less than 10% after 50 cycles. Too low calcination temperature or insufficient calcination time, however, could result in the residual of CHx in the electrode and led to a decrease of electrode performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号