首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initial stages of palladium deposition onto Au(111) from 0.1 M H2SO4 + 0.1 mM PdSO4 have been studied by cyclic voltammetry and in situ scanning tunnelling microscopy. While Pd is commonly deposited from chloride solutions, the effect of sulphate adsorption is considered in this work. A Pd monolayer is formed at underpotentials before a second monolayer grows at overpotentials. There is strong evidence that these two Pd layers are pseudomorphic with the Au(111) substrate. Sulphate is adsorbed on the pseudomorphic Pd layers over a wide potential range in a ()R19.1° structure like in the case of massive Pd(111). The deposition process changes to three-dimensional growth with the third Pd layer, which has already bulk properties. This is indicated by the appearance of a voltammetric peak in the hydrogen adsorption region, which is characteristic for the behaviour of massive Pd(111). Differences to Pd deposition from chloride solutions are discussed.  相似文献   

2.
基于巴豆醛在M/Au(111)合金表面(M=In,Ir)垂直吸附的最稳定吸附结构,采用密度泛函理论对其不完全加氢的反应机理进行探究。从不同加氢机理下各基元反应的活化能、反应热计算以及构型变化分析中可知,巴豆醛在M/Au(111)面上均优先对距离合金表面较近的C=O进行加氢,且以C为活性中心优先进行加氢为最优机理,其中第1步加氢反应的活化能较高,是该机理的控速步骤。反应物巴豆醛的O原子与合金的掺杂原子M形成较强的化学吸附,提高了M/Au(111)面对C=O加氢的选择性。巴豆醛按最优机理加氢的基元反应中在In/Au(111)面上最高反应能垒为0.969 eV,比在Ir/Au(111)面的最高反应能垒1.332 eV低,因此认为In/Au合金对其不完全加氢有更好的催化活性。  相似文献   

3.
4.
Palladium clusters have been deposited on the surface of a Au(111) electrode with the tip of a scanning tunnelling microscope. The distance over which the tip was moved towards the surface has a decisive influence on the properties of the clusters: the larger this distance, the larger the generated clusters, and the more stable they are. These findings are supported by computer simulations, which further suggest that the larger clusters contain a sizable amount of gold, which enhances their stability. Dissolution of the clusters occurs from the edges rather than layer by layer.  相似文献   

5.
Light emission from the M-type enantiomer of a helicene derivative (2,13-bis(hydroxymethyl)[7]-thiaheterohelicene) adsorbed on the clean Au(111) and the C60-covered Au(111) surfaces were investigated by tunneling-current-induced light-emission technique. Plasmon-originated light emission was observed on the helicence/Au(111) surface and it was strongly suppressed on the area where the helicene molecules were adsorbed at the edges of the Au(111) terraces. To avoid luminescence quenching of excited helicene molecules and to suppress strong plasmon light emission from the Au(111) surface, C60 layers were used as decoupling buffer layers between helicene molecules and the Au(111) surface. Helicene molecules were adsorbed preferentially on the Au(111) surface rather than on the C60 buffer layers due to the small interaction of the molecules and C60 islands. This fact motivated us to deposit a multilayer of helicene molecules onto the C60 layers grown on the Au(111) surface, leading to the fact that the helicene/C60 multilayer showed strong luminescence with the molecules character. We consider that such strong light emission from the multilayer of helicene molecules has a plasmon origin strongly modulated by the molecular electronic states of (M)-[7]TH-diol molecules.  相似文献   

6.
7.
The reaction of sulfur and oxygen with the gold surface is important in many technological applications, including heterogeneous catalysis, corrosion, and chemical sensors. We have studied reactions on Au(111) using scanning tunneling microscopy (STM) in order to better understand the surface structure and the origin of gold’s catalytic activity. We find that the Au(111) surface dynamically restructures during deposition of sulfur and oxygen and that these changes in structure promote the reactivity of Au with respect to SO2 and O2 dissociation. Specifically, the Au(111) herringbone reconstruction lifts when either S or O is deposited on the surface. We attribute this structural change to the reduction of tensile surface stress via charge redistribution by these electronegative adsorbates. This lifting of the reconstruction was accompanied by the release of gold atoms from the herringbone structure. At high coverage, clusters of gold sulfides or gold oxides form by abstraction of gold atoms from regular terrace sites of the surface. Concomitant with the restructuring is the release of gold atoms from the herringbone structure to produce a higher density of low-coordinated Au sites by forming serrated step edges or small gold islands. These undercoordinated Au atoms may play an essential role in the enhancement of catalytic activity of gold in reactions such as oxygen dissociation or SO2 decomposition. Our results further elucidate the interaction between sulfur and oxygen and the Au(111) surface and indicate that the reactivity of Au nanoclusters on reducible metal oxides is probably related to the facile release of Au from the edges of these small islands. Our results provide insight into the sintering mechanism which leads to deactivation of Au nanoclusters and into the fundamental limitation in the edge definition in soft lithography using thiol-based self-assembled monolayers (SAMs) on Au. Furthermore, the enhanced reactivity of Au after release of undercoordinated atoms from the surface indicate a relatively insignificant role of an oxide support for high reactivity.  相似文献   

8.
The interaction of the methyl nitrite molecule (CH3ONO) with the gold(111) surface has been studied by means of density functional calculations. The perfect Au(111) surface has been represented by a rather large cluster model, Au22, that was in turn used to extract information about the preferred adsorption geometry of the CH3ONO species. Vibrational frequencies and adsorption energy are also reported. The calculated adsorption energies are 31.2 kJ/mol with respect to gas phase cis-conformer and 35.1 kJ/mol with respect to trans-methyl nitrite, very close to the experimental adsorption energy of 33.5 kJ/mol. From the analysis of vibrational frequencies of gas phase and adsorbed species it is concluded that only the cis-conformer is present at the Au(111) surface.  相似文献   

9.
In this paper, the systematic evolution process of self-assembled Au droplets is successfully demonstrated on GaAs (111)A, (110), (100), and (111)B. On various GaAs substrates, self-assembled Au clusters begin to nucleate at around 300°C, and then, they develop into wiggly Au nanostructures at 350°C. Between 400°C and 550°C, the self-assembled dome-shaped Au droplets with fine uniformity are fabricated with various sizes and densities based on the Volmer-Weber growth mode. Depending on the annealing temperature, the size including the average height and lateral diameter and the density of Au droplets show the opposite trend of increased size with correspondingly decreased density as a function of the annealing temperature due to the difference in the diffusion length of adatoms at varied activation energy. Under an identical growth condition, depending on the surface index, the size and density of Au droplets show a clear distinction, observed throughout the temperature range. The results are systematically analyzed and discussed in terms of atomic force microscopy (AFM) images, cross-sectional line profiles, and Fourier filter transform (FFT) power spectra as well as the summary plots of the size and density.  相似文献   

10.
An adsorbent (PEI-GA) is prepared by crosslinking polyethyleneimine with glutaraldehyde. PEI-GA shows outstanding adsorption performance towards Au(III) and Pd(II). PEI-GA presents large adsorption capacity towards Au(III) in a wide application pH range from 1 to 9. The adsorption capacities of PEI-GA for Au(III) and Pd(II) at 25°C reach 2575 and 497 mg/g, respectively. Au(III) and Pd(II) can be adsorbed completely within 10 min for 8.3 mg/L Au(III) and 20 min for 9.7 mg/L Pd(II). The adsorption equilibrium time required for 523.9 mg/L Au(III) and for 565.6 mg/L Pd(II) is 2 and 9 h, respectively. The Sips model is the most suitable to describe the adsorption isotherms which leads to more realistic adsorption capacities for both metals. PEI-GA also exhibits high selectivity and repeatability towards Au(III) and Pd(II). The adsorption mechanism involves redox, chelation coordination, and electrostatic interactions for Au(III), and coordination and electrostatic interactions for Pd(II).  相似文献   

11.
We report on potential-dependent in situ SFG and DFG spectroscopy carried out at Au(111), Au(210), polycrystalline Au, Au–Cu and Au–Ag–Cu electrodes in contact with aqueous solutions containing CN and 4-cyanopyridine (4CP). Spectroelectrochemical work was complemented by cyclic voltammetry. The chief stress has been placed on systematising and quantifying the interaction between 4CP and CN and the attending effects on the vibrational and electronic structures of the interface. The voltammetric behaviour of the investigated electrodes, modified by the addition of 4CP to the CN electrolyte, denote changes in the CN adsorption characteristics and effects of the adsorbed CN layer on the electrodic reactivity of 4CP. The differences among the investigated electrodes can be explained in terms of their respective degrees of atomic packing or with alloying effects on the stability of adsorbed CN. The potential-dependent spectra have been analysed quantitatively with a model for the second order non linear susceptibility accounting for vibrational and electronic effects. The spectral changes induced by addition of 4CP denote interaction of the aromatic with the electrode through the CN monolayer. The non-resonant contribution yields information on the effects of 4CP on the fine structure of the bound electron density of states.  相似文献   

12.
Surface chemistry involved in the epitaxy of graphene by sublimating Si atoms from the surface of epitaxial 3C-SiC(111) thin films on Si(111) has been studied. The change in the surface composition during graphene epitaxy is monitored by in situ temperature-programmed desorption spectroscopy using deuterium as a probe (D2-TPD) and complementarily by ex situ Raman and C1s core-level spectroscopies. The surface of the 3C-SiC(111)/Si(111) is Si-terminated before the graphitization, and it becomes C-terminated via the formation of C-rich (6√3 × 6√3)R30° reconstruction as the graphitization proceeds, in a similar manner as the epitaxy of graphene on Si-terminated 6H-SiC(0001) proceeds.  相似文献   

13.
Electrochemical deposition of Ag and potential-induced structural change of the deposited Ag layer on a reconstructed surface of Au(1 1 1) electrode were followed by in situ scanning tunneling microscope (STM). A uniform Ag monolayer was formed on a reconstructed Au(1 1 1) surface in a 50-mM H2SO4 solution at +0.3 V (vs. Ag/AgCl) after adding a solution containing Ag2SO4 so that the concentration of Ag+ in the STM cell became ca. 2 μM. No characteristic height corrugation such as the Au reconstruction was observed on the surface, indicating that the lifting of the substrate Au reconstruction occurred by Ag deposition. The formed Ag monolayer was converted to a net-like shaped Ag nano-pattern of biatomic height when the potential was stepped from +0.3 to −0.2 V in the solution containing 2 μM Ag+. This result indicates that the substrate Au(1 1 1)-(1 × 1) surface was converted to the reconstructed surface even in the presence of Ag adlayer. Quite different structure was observed for Pd deposition on a reconstructed surface of Au(1 1 1) electrode at +0.3 V and the origin for this difference between Ag and Pd deposition is discussed.  相似文献   

14.
The underpotential deposition (UPD) of Bi on Au(1 1 0) was investigated in HClO4 solution using in situ scanning tunneling microscopy. The UPD of Bi occurred in three steps. A structure, in which Bi atoms formed dimers, was found for the first UPD adlayer. A (1 × 1) image was obtained by STM at the second UPD peak. For the third UPD peak, Bi atoms formed an incommensurate adlayer, and stripes of Bi were observed on terraces. After the third UPD, a structural reconstruction caused by adsorbed Bi was observed.  相似文献   

15.
The deposition of Pt onto unreconstructed Au(111) and Au(100) was studied with cyclic voltammetry and in-situ STM. The latter revealed that in [PtCl4]2− containing electrolytes, both surfaces are covered by an ordered adlayer of the complex. For the adsorbed [PtCl4]2− a slightly compressed (√7×√7) R19.1°-structure was assumed for Au(111) and a (3×√10) for Au(100). In both cases, a rather high overpotential for Pt deposition was observed, most probably due to the high stability of the [PtCl4]2− complex. Nucleation of Pt starts mainly at defects like step edges for low deposition rates and three-dimensional clusters are formed. Due to the high overpotential, some nuclei appear also on terraces at random sites. Higher coverages of Pt lead to a cauliflower like appearance. It is not possible to dissolve the platinum clusters at positive potentials without severely roughening the gold surface. The [PtCl4]2− complex is oxidized to the [PtCl6]2− complex at about 0.7 V, when metallic Pt is on the surface.  相似文献   

16.
A. Damian 《Electrochimica acta》2010,55(27):8087-8099
In this work we study the electrochemical growth and dissolution of a Ni on Pd-Au(1 1 1) bimetallic surfaces using in situ scanning tunnelling microscopy. We also compare Ni deposition on monometallic electrodes, i.e. Au(1 1 1) and Pd(1ML)/Au(1 1 1), using electrochemical characterizations. Results evidence that the first Ni monolayer grows preferentially on Au(1 1 1) in a wide potential range, and that a full Ni monolayer covering the entire Pd-Au surface can be selectively dissolved from Pd islands. No such selectivity is observed upon growth of subsequent Ni atomic planes. We demonstrate that the Ni-substrate interactions play a key role in the above mentioned selectivity. The binding energy of Ni to Pd is found to be 80 meV smaller than of Ni to Au. The sign and the amplitude of this difference are discussed in light of the d band filling of the Pd-Au(1 1 1) bimetallic surface and the presence of adsorbed H on Pd before deposition.  相似文献   

17.
The dimerization reaction of ethylene was studied over Pt(111) and (3×3)R30°-Sn/ Pt(111) model catalysts at moderate pressures (20–100 Torr). The catalyst surfaces were prepared and characterized in a UHV surface analysis system and moderate pressure catalytic reactions were conducted with an attached batch reactor. The overall catalytic activity of the (3×3)R30°-Sn/Pt(111) surface alloy for C4 products was slightly higher than that at Pt(111). In addition to the dimerization reaction, hydrogenolysis of ethylene to propane and methane was also observed, with the (3×3)R30°-Sn/Pt(111) surface alloy less active than Pt(111). Among the C4 products, butenes andn-butane were the major components. Carbon buildup was observed to be significant above 500 K with the (3×3)R30°-Sn/Pt(111) surface alloy much more resistant than Pt(111). The dimerization of ethylene was not eliminated by the presence of surface carbonaceous deposits and even at significant surface coverages of carbon the model catalysts exhibited significant activities. The results are discussed in terms of the surface chemistry of ethylene and the previously reported catalytic reactions of acetylene trimerization andn-butane hydrogenolysis at these surfaces.  相似文献   

18.
We have studied by in situ scanning tunneling microscopy the homoepitaxial electrodeposition on reconstructed and partially reconstructed Au(1 0 0) surfaces from chloride-containing solutions. Layer-by-layer, but strongly anisotropic, growth is observed on a completely reconstructed surface. On a partially reconstructed surface nucleation occurs on the unreconstructed areas, but the new islands formed tend to be pinned, growing anisotropically along the borders between reconstructed and unreconstructed areas.  相似文献   

19.
The formation and the reactivity of V-oxide/Rh(111) inverse catalyst surfaces has been investigated by reflection absorption infra red spectroscopy (RAIRS), varaiable-temperature scanning tunneling microscopy (VT-STM) and thermal programed desorption (TPD), The oxidation of metallic V island structures deposited on Rh(111) at room temperature has been monitored in situ at 200 °C and 400 °C by VT-STM and RAIRS, leading to small-island and large-island morphologies, respectively. The different reactivities of the generated inverse catalyst surfaces have been probed using the adsorption and oxidation reaction of CO. It is shown that the small-island V-oxide/Rh(111) catalyst exhibits enhanced reactivity in the oxidation of CO and is more easily subjected to oxide reduction. This is ascribed to the significant influence of the metal-oxide phase boundary on the catalyst activity. This paper is dedicated to Konrad Hayek.  相似文献   

20.
The mechanism and kinetics of electrocrystallization of Au nanoparticles on glassy carbon (GC) were investigated in the system GC/1 mM KAuCl4 + 0.1 M HClO4. Experimental results show that the gold electrodeposition follows the so-called Volmer-Weber growth mechanism involving formation and growth of 3D Au nanoparticles on an unmodified GC substrate. The analysis of current transients shows that at relatively positive electrode potentials (E ≥ 0.84 V) the deposition kinetics corresponds to the theoretical model for progressive nucleation and diffusion-controlled 3D growth of Au nanoparticles. The potential dependence of the nucleation rate extracted from the current transients is in agreement with the atomistic theory of nucleation. At sufficiently negative electrode potentials (E ≤ 0.64 V) the nucleation frequency becomes very high and the nucleation occurs instantaneously. Based on this behaviour is applied a potentiostatic double-pulse routine, which allows controlled electrodeposition of Au nanoparticles with a relatively narrow size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号