首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatigue-crack-growth rate tests were conducted on compact specimens made of 2324-T39 aluminum alloy to study the behavior over a wide range in load ratios (0.1  R  0.95) and a constant Kmax test condition. Previous research had indicated that high R (> 0.7) and constant Kmax test conditions near threshold were suspected to be crack-closure free and that any differences were attributed to Kmax effects. During the tests, strain gages were placed near and ahead of the crack tip to measure crack-opening loads from local strain records on all tests, except R = 0.95. In addition, a back-face strain gage was used to monitor crack lengths and also to measure crack-opening loads from remote strain records. From local gages, significant amounts of crack closure were measured at the high-R conditions and crack-opening loads were increasing as the threshold condition was approached. Crack-closure-free data, ΔKeff (= U ΔK) against rate, were calculated. These results suggest that the ΔKeff against rate relation may be nearly a unique function over a wide range of R even in the threshold regime, if crack-opening loads were measured from local strain gages and not from remote gages. At low R, all three major shielding mechanisms (plasticity, roughness, and fretting debris) are suspected to cause crack closure. But at high R and Kmax tests, roughness and fretting debris are suspected to cause crack closure above the minimum load.  相似文献   

2.
In the present work, fatigue crack growth tests of epoxy resin composite reinforced with silica particle under various R-ratios were carried out to investigate the effect of R-ratio on crack growth behavior and to discuss fatigue crack growth mechanism. Crack growth curves arranged by ΔK showed clear R-ratio dependence even under no crack closure, where the values of ΔKth were 0.82 and 0.33 MPa √m for R = 0.1 and 0.7 respectively. However, crack growth curves arranged by Kmax merged into almost one curve regardless of R-ratio, which indicated that crack growth behavior of the present composite was time-dependent. The value of Kmax,th were in the range from 0.78 to 1.12 MPa √m. In situ crack growth observation revealed the crack growth mechanism: micro-cracking near the interface between silica particle and resin matrix occurs ahead of a main crack and then micro-cracks coalesce with a main crack to grow. The crack path was in the epoxy matrix, which was consistent with the time-dependent crack growth.  相似文献   

3.
Conventionally, the reduction of ΔKth with load ratio R has been interpreted in terms of crack closure arising from plasticity, oxide or crack surface roughness. Since, plane-strain conditions exist near-threshold, plasticity-induced closure is absent. Therefore, to account for R-ratio effects near-threshold, the oxide and roughness closure mechanisms have been proposed. Further analysis has shown that these other two closure effects also are small, when the results taken in vacuum were included. The present analysis shows that there is a unique relation of the oxide thickness with a threshold Kmax, rather than with a threshold ΔK. This threshold Kmax (K*max,th) depends on environment. When the applied Kmax<K*max,th, the crack is stationary in the presence of the oxide formation and grows only when the applied Kmax>K*max,th. Thus, the oxide thickness—Kmax relation seems to have a bearing on the criterion for crack growth in the presence of the environment. Oxide formation passivates the crack surfaces and retards the environmental damage ahead of the crack-tip. Examples from CrMo and NiCrMo steels support this viewpoint and suggest that there is a pressing need for quantifying the crack-tip environmental effects and fatigue thresholds.  相似文献   

4.
This work presents the experimental results of fatigue crack growth resistance of ultrafine-grained (UFG) copper. The UFG copper has a commercial purity level (99.90%) and an average grain size of 300 nm obtained by a 8-passes route Bc ECAP process. The fatigue propagation tests are conducted in air, at load ratios R = Kmin/Kmax varying from 0.1 to 0.7, on small Disk Shaped CT specimens. Both stage I and stage II regime of growth rate are explored. Results are partially in contrast with the few experimental data available in the technical literature, that are by the way about high purity UFG copper. In fact, the present material shows a relatively high fatigue crack resistance with respect to the unprocessed coarse-grained alloy, especially at high values of applied stress intensity factor ΔK. At higher R-ratio a smaller threshold intensity factor is found, together with a lower stage II fatigue crack growth rate. The explanation of such crack growth retardation is based on a diffuse branching mechanism observed especially at higher average ΔK.  相似文献   

5.
In this paper R-ratio effects on fatigue crack growth near threshold region of a metastable austenitic stainless steel (MASS) in two different conditions, i.e. annealed and cold rolled, is investigated. The authors present two approaches to correlate FCGR data for R = 0.1, 0.3, 0.5, 0.7 and Kmax = 23 MPa√m using a two-parameters approach (ΔK, Kmax and α in Kujawski’s model) and crack closure model (using Elber’s Kop and in Donald’s ACRn2 approaches). The Kop and ACRn2 were experimentally measured on a single edge tension specimens. The Kop measurements were performed using a modified method and based on ASTM standards. While the two driving force approaches correlate data well in the Paris region, they fail to correlate them in the threshold region. However, this correlation can be improved in the threshold region when a different α value from the Paris region is used. The authors indicated that two different mechanisms operate; one in the Paris region and another in the near threshold. Hence, they proposed to combine the two-parameter and crack closure approaches where ΔK is replaced by ΔKeff (estimated by a new method proposed in this paper), which is shown to correlate the FCGR data for different stress ratios for annealed steel. The correlation for cold rolled condition shows improvement with the new approach but is not as good as for the annealed one. The author further suggests to modify Kmax in the two-parameter approach.  相似文献   

6.
A mechanism of mode I fatigue-crack propagation, which involves the initiation and opening of the cleavage-mode crack, is proposed. This approach uses a renewal stochastic damage-accumulation model for crack propagation, in which the parameters are defined based on the dislocation density and the elastic energy of dislocation. The calculated results of ΔKeff for da/dn agree with the experimental data. ΔKeff th is calculated under the condition that the energy of cleavage-crack initiation is equal to that given from the outside of material. The plastic-zone size is calculated based on the number of dislocations on each slip line contained within it.  相似文献   

7.
Detailed full-field three-dimensional (3D) finite element analyses have been conducted to study the out-of-plane stress constraint factor Tz around a quarter-elliptical corner crack embedded in an isotropic elastic plate subjected to uniform tension loading. The distributions of Tz are studied in the forward section (0° ? θ ? 90°) of the corner cracks with aspect ratios a/c of 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. In the normal plane of the crack front line, Tz drops radially from Poisson’s ratio at the crack tip to zero beyond certain radial distances. Strong 3D zones (Tz > 0) exist within a radial distance r/a of about 4.6-0.7 for a/c = 0.2-1.0 along the crack front, despite the stress-free boundary conditions far away. At the same radial distance along the crack front in the 3D zones, Tz increases from zero on one free surface to a peak value in the interior, and then decreases to zero on another free surface. The distributions of Tz near the corner points are also discussed. Empirical formulae describing the 3D distributions of Tz are obtained by fitting the numerical results, which prevail with a sufficient accuracy in the valid range of 0.2 ? a/c ? 1.0 and 0° ? θ ? 90° except very near the free surfaces where Tz is extremely low. Combined with the K-T solution, the transition of approximate plane-stress state near the surfaces to plane-strain state in the interior can be characterized more accurately.  相似文献   

8.
High temperature fatigue crack growth has been examined in the light of the new concepts developed by the authors. We observe that the high temperature crack growth behavior can be explained using the two intrinsic parameters ΔK and Kmax, without invoking crack closure concepts. The two-parameter requirement implies that two driving forces are required simultaneously to cause fatigue cracks to grow. This results in two thresholds that must be exceeded to initiate the growth. Of the two, the cyclic threshold part is related to the cyclic plasticity, while the static threshold is related to the breaking of the crack tip bonds. It is experimentally observed that the latter is relatively more sensitive to temperature, crack tip environment and slip mode. With increasing test temperature, the cycle-dependent damage process becomes more time-dependent, with the effect that crack growth is dominated by Kmax. Thus, in all such fracture processes, whether it is an overload fracture or subcritical crack growth involving stress corrosion, sustained load, creep, fatigue or combinations thereof, Kmax (or an equivalent non-linear parameter such as Jmax) remains as one essential driving force contributing to the final material separation. Under fatigue conditions, cyclic amplitude ΔK (or an equivalent non-linear parameter like ΔJ) becomes the second necessary driving force needed to induce the characteristic cyclic damage for crack growth. Cyclic damage then reduces the role of Kmax required for crack growth at the expense of ΔK.  相似文献   

9.
Abstract Crack closure has been measured for a range of small, self-initiated fatigue cracks using in situ SEM loading. Cracks were grown at positive R ratios in the aluminium alloy 2024-T351 and at nominal ΔK levels that extend substantially below the corresponding long crack threshold. The crack closure stress of the small cracks decreased and the Kcl level increased with increasing crack size until the long crack value near threshold was reached. For cracks of depth larger than about one grain size, a good correlation was obtained between small and long crack growth rate data in terms of ΔKeff  相似文献   

10.
Crack closure of physical short and long cracks of LY12CZ aluminum alloy during fatigue process was investigated using acoustic emission (AE) technique. Results showed that the effective fatigue crack growth curve (da/dN vs. ΔKeff) of physical short and long cracks obtained by the AE technique was consistent with the effective fatigue crack growth curve at high stress ratio (R = 0.8), which implied that the AE technique could measure the crack closure level, especially for physical short crack. The growth rate of physical short crack was much higher than that of long crack at the same ΔK, and the lower crack closure level of short crack was the main reason.  相似文献   

11.
Crack closure is the most used mechanism to model thickness and load interaction effects on fatigue crack propagation. But assuming it is the only mechanism is equivalent to suppose that the rate of fatigue crack growth da/dN is primarily dependent on ΔKeff=KmaxKop, not on ΔK. But this assumption would imply that the normal practice of using da/dN×ΔK curves measured under plane-stress conditions (without considering crack closure) to predict the fatigue life of components working under plane-strain could lead to highly non-conservative errors, because the expected fatigue life of “thin” (plane-stress dominated) structures could be much higher than the life of “thick” (plane-strain dominated) ones, when both work under the same stress intensity range and load ratio. However, crack closure cannot be used to explain the overload-induced retardation effects found in this work under plane-strain, where both crack arrest and delays were associated to an increase in ΔKeff. These results indicate that the dominant role of crack closure in the modeling of fatigue crack growth should be reviewed.  相似文献   

12.
Abstract— The influence of age-hardening on the middle and low crack growth rates of a 7075 Al alloy is studied in vacuum. A transition in fracture surfaces morphology and crack growth curves is observed with the T 651 and T 7351 treatments in the near-threshold regime. Measurements of crack closure show its dependance on surfaces roughness and explain the lack of dependance of ΔKth with load ratio, except for the T 7351 alloy. An equation of crack growth rate to the fourth power of ΔKeff is in good agreement only with the crack propagation curves obtained for microstructure with an homogeneous deformation mode.  相似文献   

13.
ABSTRACT Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks, near‐threshold growth behavior of large cracks at constant R‐ratio/decreasing ΔK and constant Kmax/decreasing ΔK, respectively, for 9310 steel. The results showed that a pronounced small‐crack effect was not observed even at R = ?1, small cracks initiated by a slip mechanism at strong slip sites. Worst‐case near‐threshold testing results for large cracks under several Kmax values showed that an effect of Kmax on the near‐threshold behavior does not exist in the present investigation. A worst‐case near‐threshold test for a large crack, i.e. constant Kmax/decreasing ΔK test, can give a conservative prediction of growth behavior of naturally initiated small cracks. Using the worst‐case near‐threshold data for a large crack and crack‐tip constraint factor equations defined in the paper, Newman's total fatigue‐life prediction method was improved. The fatigue lives predicted by the improved method were in reasonable agreement with the experiments. A three‐dimensional (3D) weight function method was used to calculate stress‐intensity factors for a surface crack at a notch of the present SENT specimen (with r/w = 1/8) by using a finite‐element reference solution. The results were verified by limited finite‐element solutions, and agreed well with those calculated by Newman's stress‐intensity factor equations when the stress concentration factor of the present specimen was used in the equations.  相似文献   

14.
Recent interest in the constant Kmax (Kcmax) threshold testing procedure has resulted in a more in-depth study of the influence of Kmax level on fatigue response and ΔKth in aluminium alloys. Under Rc= 0.1 conditions, which cause large amounts of closure, ΔKth levels were typically 2 to 4 Mpam. However, under Kcmax test procedures, associated with no measurable closure at threshold, ΔKth was typically 1 Mpam. A slight Kcmax level effect on ΔKth was observed at high Kmax values for some of the alloys, and was deemed to be a pure mean stress effect, separate from closure arguments.  相似文献   

15.
This paper summarizes a study which has been conducted to examine the recently proposed fatigue crack driving force parameter, , and its ability to predict the crack growth rate for different R-ratios. A validation of the effectiveness of the proposed K∗ parameter relative to the existing crack closure approach, ΔKeff, is analyzed and discussed. Experimental data for ten different types of materials taken from literature were used in the analyses. Presented results indicate that the K∗ parameter is equally effective or better than ΔKeff in correlating and predicting the R-ratio effects on crack growth rate.  相似文献   

16.
The growth behaviour of small fatigue cracks has been investigated in a low carbon steel under axial loading at the stress ratios R of –1 (tension-compression) and 0 (pulsating-tension). Crack closure was measured to evaluate the effects of stress ratio and stress level on small crack growth. Except for the accelerated growth at stress levels close to the yield stress of the material, at R=–1 small cracks grow faster than large cracks below a certain crack length, but at R= 0 the crack growth rates for small cracks are coincident with those for large cracks in the whole region of crack length investigated. The critical crack length, 2cc, above which the growth behaviour of small cracks is similar to that of large cracks depends on stress ratio, being 1–2 mm at R=–1 and smaller than 0.7 mm at R=0. The 2cc value at R=–1 agrees with that obtained under rotating bending (R=–1). The small crack data are closely correlated with large crack growth rates in terms of the effective stress intensity range, ΔKeff; thus ΔKeff is found to be a characterizing parameter for small crack growth including the growth at the higher stress levels.  相似文献   

17.
Crack growth rate and crack closure during fatigue of type 304 stainless steel are measured with an optical microscope and television camera. Based on the crack closure data an effective stress intensity range ΔKeff is calculated. The da/dn vs ΔKeff-curves indicate that crack closure could account for the R-influence as normally derived from da/dn vs ΔK-curves. Measurements of striation spacing lead to the conclusion that at higher da/dn values crack growth mechanisms dependent on Kmax play an important role; these mechanisms are probably responsible for the R-influence in the range of the higher da/dn-values.  相似文献   

18.
Fatigue crack growth thresholds ΔKth were determined for friction stir welded butt joints made from aluminium alloys AA2024 and AA6013. Plotting the thresholds as a function of load ratio R showed distinctly higher amounts for welded joints as compared to those for parent material at small load ratios, but differences became smaller with increasing load ratio, until thresholds became finally identical for the highest R values. Applying Döker’s concept of two controlling parameters, namely ΔK and Kmax [1], and plotting ΔKth versus Kmax, however, revealed that the effective threshold ΔKth,eff determined at very high R ratios was nearly independent on the alloy and, simultaneously, was identical for parent material and respective welded joints. Thus, differences in threshold behaviour were only caused by the second threshold Kmax,th, which was significantly higher for welded joints as compared to parent material. Differences in Kmax,th coincided with compressive residual stresses determined by cut-compliance measurements in terms of stress intensity factors Krs acting at the crack tip. Based on the analytical approach described by Döker [1], only one characteristic Krs value was needed to calculate all thresholds of welded joints for 0  R  1 provided a base material master curve is available.  相似文献   

19.
On the development of crack closure at high R levels after an overload   总被引:1,自引:0,他引:1  
ABSTRACT In a 1999 paper it was asserted that crack closure cannot be of major importance in the mechanism of crack retardation following an overload, particularly since the authors found no evidence for crack closure at high R‐values, although crack retardation was observed. In the present work, overload experiments were carried out at R = 0.5 and crack closure was observed. In addition, the rate of fatigue crack growth in both constant amplitude and overload tests was found to be a function of ΔKeff. It is concluded that crack closure is an important part of the retardation mechanism.  相似文献   

20.
Abstract— Fatigue crack propagation threshold values have been determined with two experimental methods, it., the constant R method and the constant Kmax method. Three materials, namely A17075-T7351 and Ti6A14V STA in the LT- and TL-orientations, and a Ti-turbine disk material (IMI 685) in the CR-orientation, were investigated. The paper is divided into 3 parts. In the first part the test conditions, the experimental results and the conclusions drawn from the experimental results are presented, namely that the three different functional dependencies of ΔKth on R cannot be reconciled with present continuum mechanics concepts. In the second part, some facts used in conjunction with the da/dN–ΔKeff methodology are applied to the non-propagation condition ΔKth. Parameters such as KOp, the threshold ΔKT, and a parameter “KLL” are investigated by numerical modelling of their individual influence on the ΔKth versus R curves. This modelling work shows that the individual ΔKth versus R curves are primarily dependent on the Kop behavior of the respective material. Further, it is shown that the threshold ΔKT is a constant value, independent of any particular cyclic loading condition. In the third part of the paper, the ΔKeff concept is applied to the experimental results obtained in the first part. Using either experimentally or semi-empirically determined Kop functions and the measured ΔKT values, the ΔKth versus R curves of the three materials investigated were accurately reconstructed. It follows that the ΔKth versus R curves of the individual materials are the natural consequence of the driving force for fatigue crack propagation, namely ΔKeff  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号