首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the aggregate size on the fracture energy, tensile strength and elasticity modulus in different types of concrete are analyzed. For this purpose, nine simple cement-based composites have been designed, manufactured and tested, with one objective to provide experimental results that can be used as a benchmark for checking numerical models of concrete fracture, as this simple composite (a matrix, spherical aggregates of the same radius, and two types of matrix-aggregate interface) is amenable to modelling. All in all, 44 specimens were tested. From notched beam tests, values of the fracture energy and modulus of elasticity were obtained. The tensile stress was deduced from indirect standard tensile test. Data for bilinear softening functions extracted from the experimental measurements are also provided. Comparison with available experimental data is also included and discussed.  相似文献   

2.
Fracture tests were performed on six types of simple concrete made with two types of mortar matrix w/c = 0.32 and w/c = 0.42, two types of spherical aggregates (strong aggregates that debonded during concrete fracture, and weak aggregates, able to break), and two kinds of matrix-aggregate interface (weak and strong).The tensile strength, fracture energy and elasticity modulus of the six types of concrete were measured. These results are intended to serve as an experimental benchmark for checking numerical models of concrete fracture and for providing certain hints to better understand the mechanical behaviour of concrete.A bilinear softening function was used to model the fracture of concrete. The influence of the type of matrix, aggregate, and interface strength on the parameters of the softening curve are discussed: particularly, the fracture energy, the cohesive strength and the critical crack opening.  相似文献   

3.
The apparent fracture energy of concrete experimentally determined on the basis of the work of fracture in bending or wedge splitting tests becomes larger with increasing specimen dimensions. This experimental observation may be attributed to the varying local fracture energy along the crack path. When the crack tip approaches the specimen boundary, the size of the fracture process zone will be reduced and, consequently, only a portion of the fracture energy is activated; i.e., the local fracture energy is getting smaller. The influence of this boundary effect diminishes with increasing specimen size resulting in the size dependence of the apparent fracture energy determined by the work-of-fracture method as an average value in the ligament. With varying local fracture energy, the local softening curve will also show variations. The latter are subject of the present study. Wedge splitting tests with different specimen sizes as well as inverse analyses of these experiments were carried out. For the inverse analyses, the cohesive crack model was adopted and an evolutionary optimization algorithm has been used. The boundary effect on the local fracture properties was taken into account and, as a result, the variation of the softening curve along the crack path could be determined. It was found that the tail of the softening curve is shortened and lowered due to the boundary effect whereas the initial slope of this curve appears to be not affected.  相似文献   

4.
This study evaluates quality properties and toxicity of coal bottom ash coarse aggregate and analyzes mechanical properties of porous concrete depending on mixing rates of coal bottom ash. As a result, soundness and resistance to abrasion of coal bottom ash coarse aggregate were satisfied according to the standard of coarse aggregate for concrete. To satisfy the standard pertaining to chloride content, the coarse aggregates have to be washed more than twice. In regards to the result of leaching test for coal bottom ash coarse aggregate and porous concrete produced with these coarse aggregates, it was satisfied with the environment criteria. As the mixing rate of coal bottom ash increased, influence of void ratio and permeability coefficient was very little, but compressive and flexural strength decreased. When coal bottom ash was mixed over 40%, strength decreased sharply (compressive strength: by 11.7–27.1%, flexural strength: by maximum 26.4%). Also, as the mixing rate of coal bottom ash increased, it was confirmed that test specimens were destroyed by aggregate fracture more than binder fracture and interface fracture. To utilize coal bottom ash in large quantities, it is thought that an improvement method in regards to strength has to be discussed such as incorporation of reinforcing materials and improvement of aggregate hardness.  相似文献   

5.
The paper analyses the interaction between strain-softening and time-dependent behaviour in the case of quasi-static fracture of concrete. A viscous element based on a fractional order rate law is coupled with a micromechanical model for the fracture process zone. This approach makes it possible to include a whole range of dissipative mechanisms in a single rheological element. Creep fracture in mode I conditions is analysed through the finite element method, the cohesive (or fictitious) crack model and a new space and time integration scheme. The comparison with creep tests executed on three-point bending conditions shows a good agreement.  相似文献   

6.
本文将石屑和水洗河砂按比例配制组成混合砂应用于混凝土中,通过试验调整和试用,混凝土工作性和强度良好。  相似文献   

7.
Modelling of fracture process in concrete using a novel lattice model   总被引:2,自引:0,他引:2  
Papers deals with simulations of fracture process in quasi-brittle materials like concrete with a novel lattice model. Concrete was described mainly as a three-phase material composed of aggregate, cement matrix and interfacial transition zones. The calculations were carried out for concrete specimens subject to uniaxial extension, shear and extension and three-point bending. Two-dimensional and three-dimensional simulations were performed. The advantages and disadvantages of the proposed model were outlined.  相似文献   

8.
Laboratory tests are performed to investigate the effects of a new method of mixture proportioning on the creep and shrinkage characteristics of concrete made with recycled concrete aggregate (RCA). In this method, RCA is treated as a two component composite material consisting of residual mortar and natural aggregate; accordingly, when proportioning the concrete mixture, the relative amount and properties of each component are individually considered. The test variables include the mixture proportioning method, and the aggregate type. The results show that the amounts of creep and shrinkage in concretes made with coarse RCA, and proportioned by the new method, are comparable to, or even lower than, those in similar concretes made entirely with natural aggregates. Furthermore, it is demonstrated that by applying the proposed “residual mortar factor” to the existing ACI and CEB methods for calculating creep or shrinkage of conventional concrete, these methods could be also applied to predict the creep and shrinkage of RCA-concrete.  相似文献   

9.
Experimental tests on crack propagation in concrete under constant post-peak loading are simulated using the finite element method and the cohesive crack model, in both Mode I and Mixed-mode conditions. The time-dependent behaviour of concrete in the process zone is due to the interaction and growth of microcracks, a phenomenon which, for high constant load levels, turns out to be predominant over linear viscoelastic creep in the bulk material. In mechanical systems based on this type of material behaviour (creep and strain-softening taking place simultaneously), the initial value problem is non-parabolic, i.e., the error at one time level is affected by the accumulation of errors introduced at earlier time levels. Despite these difficulties, the scatter in numerical failure lifetime vs. load level turns out to be negligible in Mode I conditions and practically acceptable in Mixed-mode conditions. Therefore the time-dependent behaviour of the process zone can be inferred solely from the results of direct tensile tests.  相似文献   

10.
The characterization of the softening curve from experimental results is essential for predicting the fracture behavior of quasi-brittle materials like concrete. Among various shapes (e.g. linear, exponential) to describe the softening behavior of concrete, the bilinear softening relationship has been extensively used and is the model of choice in this work. Currently, there is no consensus about the location of the kink point in the bilinear softening curve. In this study, the location of the kink point is proposed to be the stress at the critical crack tip opening displacement. Experimentally, the fracture parameters required to describe the bilinear softening curve can be determined with the “two-parameter fracture model” and the total work of fracture method based on a single concrete fracture test. The proposed location of the kink point compares well with the range of kink point locations reported in the literature, and is verified by plotting stress profiles along the expected fracture line obtained from numerical simulations with the cohesive zone model. Finally, prediction of experimental load versus crack mouth opening displacement curves validate the proposed location of the kink point for different concrete mixtures and also for geometrically similar specimens with the same concrete mixture. The experiments were performed on three-point bending specimens with concrete mixtures containing virgin coarse aggregate, recycled concrete coarse aggregate (RCA), and a 50-50 blend of RCA and virgin coarse aggregate. The verification and validation studies support the hypothesis of the kink point occurring at the critical crack tip opening displacement.  相似文献   

11.
12.
Effect of steel fibres on mechanical properties of high-strength concrete   总被引:1,自引:0,他引:1  
Steel fibre reinforced concrete (SFRC) became in the recent decades a very popular and attractive material in structural engineering because of its good mechanical performance. The most important advantages are hindrance of macrocracks’ development, delay in microcracks’ propagation to macroscopic level and the improved ductility after microcracks’ formation. SFRC is also tough and demonstrates high residual strengths after appearing of the first crack. This paper deals with a role of steel fibres having different configuration in combination with steel bar reinforcement. It reports on results of an experimental research program that was focused on the influence of steel fibre types and amounts on flexural tensile strength, fracture behaviour and workability of steel bar reinforced high-strength concrete beams. In the frame of the research different bar reinforcements (2∅6 mm and 2∅12 mm) and three types of fibres’ configurations (two straight with end hooks with different ultimate tensile strength and one corrugated) were used. Three different fibre contents were applied. Experiments show that for all selected fibre contents a more ductile behaviour and higher load levels in the post-cracking range were obtained. The study forms a basis for selection of suitable fibre types and contents for their most efficient combination with regular steel bar reinforcement.  相似文献   

13.
This paper deals with the identification of concrete fracture parameters through indirect methods based on size effect experiments. These methods utilize the size effect curve (structural strength versus structural size), associated with a certain specimen geometry, to identify the tensile strength and the initial fracture energy. These two parameters, in turn, are typically used to characterize the peak and the initial post-peak slope of the cohesive crack law. In the literature, two different approaches can be found for the calculation of the size effect curve: (a) an approach based on the polynomial interpolation of numerically calculated structural strengths of geometrically similar specimens of different sizes, and (b) the classical approach based on equivalent elastic fracture mechanics, which gives rise to the well-known Bažant’s size effect law (SEL). In this paper, the two approaches are first reviewed, the relationship between them is investigated, and a new procedure to identify the tensile strength using the SEL is proposed. Then several sets of experimental results, recently performed at the Politecnico di Milano, are analyzed with both approaches in order to assess their range of applicability and accuracy in the identification of the two fracture parameters specified above.  相似文献   

14.
In the present work, the distribution of the random toughness characteristics (i.e. critical energy release rate, G1c) has been evaluated on the basis of experimental observations. Fracture test results from three groups of geometrically similar concrete specimens of size (width×total depth×thickness), 420×420×50–1680×1680×200 mm3, made with different maximum aggregate size of 9.5, 19, 38, and 76 mm were analyzed using a recently proposed distribution of extremes. In applications of probability, it is important to use an appropriate distribution type and adequate techniques for estimating the parameters of distribution. In this study, a new type distribution of minima is employed for probability computations. It was noticed that the entropy of distribution increases with the crack length, i.e. the uncertainty of toughness, G1c, value increases with crack length. A non-linear reduction of the maximum allowable splitting force with the defect size, a, was noticed. For large specimens, the maximum allowable splitting load is more sensitive to the required reliability level than that for small specimens. Reliability increases with aggregate size when all other conditions were constant.  相似文献   

15.
Different constituents of concrete can have cracking behavior that varies in terms of the acoustic waveform that is generated. Understanding the waveform may provide insight into the source and behavior of a crack that occurs in a cementitious composite. In this study, passive acoustic emission (AE) was used to investigate the waveform properties of the individual components of concrete (i.e., aggregate, paste, and interfacial transition zone (ITZ)). First, acoustic events produced by cracks generated using mechanical loading in a wedge splitting test were detected. It was observed that cracks that occurred through the aggregate have an AE frequency range between 300 kHz and 400 kHz, while cracks that propagated through the matrix (paste and ITZ) have a frequency range between 100 kHz and 300 kHz. Second, tests were performed using samples that were susceptible to alkali silica reaction; and AE and X-ray computed tomography were used to detect cracking. AE events with a frequency range between 300 kHz and 400 kHz were detected at early ages, suggesting the initiation of cracks within reactive aggregate. At later ages, AE events were detected with frequency ranges of 100–300 kHz, indicating crack development and propagation in the matrix.  相似文献   

16.
The purpose of this study is to examine the numerical simulation of concrete specimens under high loading rates in tension. The data found in the literature are described: they show an increase in compressive and tensile strength as a function of the loading rate. To study this behaviour, we focused our attention on the assessment of the consistency model through the simulation of many experimental results related to a wide range of strain rates. In particular, the tests on unnotched and notched specimens performed at Delft University in recent years are examined. The proposed model is able to describe the increase in strength due to a high loading rate by an appropriate choice of the viscosity parameter.  相似文献   

17.
In this paper, the durability of the bondline between concrete and FRP reinforcement was characterized at various temperature and humidity levels. The linear and nonlinear viscoelastic constitutive behavior of the epoxy bondline was characterized and used for a nonlinear viscoelastic fracture analysis of delamination. A hygrothermal nonlinear viscoelastic pseudo-stress model was developed and calibrated in order to compute a generalized J integral. Driven wedge tests were conducted for examining the fracture behavior of the interface. A finite element analysis was developed for determining the cohesive zone size and the generalized J integral at various temperature and humidity levels. The fracture energy obtained from these parameters greatly depended upon crack growth rate, temperature and humidity.  相似文献   

18.
Lattice modelling of size effect in concrete strength   总被引:1,自引:0,他引:1  
This paper uses a recently improved lattice network model to study the size effect in the strength of plain concrete structures. The several improvements made to the lattice network model are: (i) tension softening of the matrix phase is included in the material modelling; (ii) the structural response is modelled by incrementing the deformation rather than the load. This eliminates the need for introducing arbitrary scaling parameters in the beam element failure criteria and; (iii) a square rather than a triangular lattice beam network is found to be adequate for modelling concrete, thus greatly reducing the computational time.The improved square lattice network has been used to simulate the complete load-deformation response of notched three-point bend beams of different sizes with a view to checking the validity of several size effect models available in the literature. Lattice simulation was found to identify microcracking, crack branching, crack tortuosity and bridging, thus allowing the fracture process to be followed until complete failure. The improved lattice model predicted smooth structural response curves in excellent agreement with test results.The simulated nominal strengths also correlated very well with the test results, apart from that for the smallest beams (depth 38.1 mm). However, even in the relatively broad range of sizes (1:8) of the test beams, there was no clear evidence that one size effect model is superior to the other. In fact, rather surprisingly the test data would appear to be equally well described by all the available size effect models. The lattice simulations however indicated a trend which is better predicted by the multifractal scaling model.  相似文献   

19.
Cohesive crack analysis of size effect   总被引:1,自引:0,他引:1  
This paper deals with the analysis of size effect in concrete. An extensive campaign of accurate numerical simulations, based on the cohesive crack model, is performed to compute the size effect curves (CSEC) for typical test configurations. The results are analyzed with reference to the classical Ba?ant’s size effect law (SEL) to investigate the relationship between CSEC and SEL. This analysis shows that as specimen size tends to infinity, the SEL represents the asymptote of the CSEC, and that the SEL parameter known as the effective fracture process zone length is a material property which can be expressed as a function of the cohesive crack law (CCL) parameters. Finally, the practical implications of this study are discussed in relation to the use of the CSEC or the SEL for the identification of the CCL parameters through the size effect method.  相似文献   

20.
Cracks in asphalt pavements create irreversible structural and functional deficiencies that increase maintenance costs and decrease lifespan. Therefore, it is important to understand the fracture behavior of asphalt mixtures, which consist of irregularly shaped and randomly oriented aggregate particles and mastic. A two-dimensional clustered discrete element modeling (DEM) approach is implemented to simulate the complex crack behavior observed during asphalt concrete fracture tests. A cohesive softening model (CSM) is adapted as an intrinsic constitutive law governing material separation in asphalt concrete. A homogenous model is employed to investigate the mode I fracture behavior of asphalt concrete using a single-edge notched beam (SE(B)) test. Heterogeneous morphological features are added to numerical SE(B) specimens to investigate complex fracture mechanisms in the process zone. Energy decomposition analyses are performed to gain insight towards the forms of energy dissipation present in fracture testing of asphalt concrete. Finally, a heterogeneous model is used to simulate mixed-mode crack propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号