首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Comparative study for determining the K R -curves associated with the cohesive stress distribution for complete fracture process for two standard specimen geometries i.e., three-point bending test and compact tension test specimen geometries of concrete using analytical method and weight function approach is reported in the paper. The laboratory size specimen (100 ≤  D  ≤  400 mm) with initial-notch length/depth ratios 0.3 and 0.5 are considered in the investigation. The load-crack opening displacement curves for these specimens are obtained using well known version of Fictitious Crack Model (FCM). It is found from the numerical results that the weight function method improves computational efficiency without any appreciable error. The stability analysis on the K R -curves and the influence of specimen geometry and the size-effect on the K R -curves, the CTOD-curves and the process zone length during crack propagation of complete fracture process are also described.  相似文献   

2.
3.
The crack extension resistance and fracture properties are studied in detail for quasi-brittle materials like concrete with a softening traction-separation law by investigating the complete fracture process. The computed samples are the three-point bending notched beams of concrete with different sizes tested by other researchers. The softening traction-separation law which was proposed by Reinhardt et al. based on direct tension tests for normal concrete materials was chosen in the computations. Different distribution shapes of the cohesive force on the fictitious crack zone were considered for the corresponding loading states. The computations were mainly based on the analytic solutions for this problem using Gauss–Chebyshev quadrature to achieve the integration which is singular at the integral boundary. The crack extension resistance curves in terms of stress intensity (KR-curves) were determined by combining the crack initiation toughness that is the inherent toughness of the material needed to resist the crack initiation in the case that is in the lack of an extension of the main crack with the contribution due to the cohesive force along the fictitious crack zone during the complete processes of fracture. The situation of crack propagation can be judged by comparing KR-curves of crack extension resistance with the stress intensity factor curves which were calculated using the lengths of the extending crack and the corresponding loads at each loading states, e.g., when the crack extension resistance curve(KR-curve) is lower than the stress intensity factor curve, the crack propagation is stable; otherwise, it is unstable. In the computation, the obtained relationship between the crack tip opening displacement CTOD and the amount of crack extension for the complete fracture process is in agreement with the testing results of other researchers. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Size effect on fracture toughness and fracture energy of composites is investigated by a simple asymptotic approach. This asymptotic analysis based on the elastic/plastic fracture transition of a large plate with a small edge crack is extended to study fracture of composite. A reference crack length, a*, is used in the model, which indicates an ideal elastic/plastic fracture transition defined by the yield strength and plane strain fracture toughness criteria. Experimental results of cementitious materials available in literature are analyzed and compared. It is shown that the common KR-curves can also be obtained by the current asymptotic model. Furthermore, a local fracture energy distribution concept is also discussed and compared with the present asymptotic approach.  相似文献   

5.
《Composites Science and Technology》2006,66(11-12):1803-1812
Continuous fibre composites are materials that exhibit rather linear elastic deformation behaviour: suggesting brittleness and notch sensitivity. However, notched composites may sustain significant mechanical load. The notch resistance of composites is investigated on quasi-isotropic composite sheets with sharp crack like notches. This allows the use of analytic solutions of the stress field around a crack in a similar way as is used for linear elastic fracture mechanics (LEFM) in homogeneous isotropic solids. Similar to the small scale yielding boundary condition in fracture mechanics, applied on homogeneous isotropic solids, a small-scale non-linear damage condition should be fulfilled for valid LEFM application on quasi-isotropic composites. Indeed, it appeared to be possible to define critical stress intensity factors (K1c) for the quasi-isotropic composite. Moreover, K1c values can quantitatively be related to laminate parameters and to the related damage and deformation processes occurring in a small near crack tip zone with intense non-linearity and strain gradients in the thickness direction. Before the final explosive fracture occurred, stable crack growth was observed. This could be described with R-curves, as done for homogeneous metal sheet specimens. Indeed, also in this case, the R-curves were identical, independent of the length of the initial crack-like notch. The R-curves can be estimated adopting a crack-bridging model. Crack growth occurs at the notch tip in the 0° plies. The other plies bridge the fractured 0° plies. The fracture mechanisms, determining the K1c-values and the shape of the R-curve, are quite different for composites and metals. Yet, the method of fracture mechanics, well established for metals, can obviously also be applied to quasi-isotropic composites.  相似文献   

6.
Studies of the influence of specimen geometry and size–effect on the K R –curves and the related fracture parameters were carried out by the authors (Kumar and Barai 2008b). The present paper is a supplementary contribution and reports interesting results related to the effect of the loading condition and size–effect studies on the K R –curves associated with the cohesive stress distribution for complete fracture process, the double–K fracture parameters, the CTOD–curves and the process zone length using two different loading conditions (i.e., three–point bending test and four–point bending test). The laboratory size specimen with initial–notch length/depth ratios 0.3 and 0.5 are considered in the work. The load–crack opening displacement curves for these loading conditions are obtained using well known version of fictitious crack model.  相似文献   

7.
R-curve measurements on PZT poled in thickness direction were carried out on CT specimens under different electric boundary conditions. The effect of specimen geometry was evaluated by measuring R-curves in CT specimens of different thickness and comparing these with R-curves in bend bars. A low coercive stress is responsible for the development of a large switching zone. This switching zone is of high relevance for the computation of the actual stress intensity factor at the crack tip and for the R-curve calculation.  相似文献   

8.
Extensive stable cracking has been observed in large test pieces of 25 mm thick weldable AlMgZn alloy which is used in the construction of a portable bridge. Standard fracture specimens produced valid KIC values, with short cracks exhibiting unstable fracture. Finite element analysis of the large specimens determined a valid JR-curve that can increase the effective KC by several times the KIC value. The R-curve has an unusual ‘concave’ shape that is associated with the change from initially flat fracture to fully slant fracture. The early stages of the R-curve are affected by in-plane constraint that can be indexed by the T-stress. The R-curve can be used to explain the stability of long cracks in full-scale tests on a bridge prototype, compared with the instability of short cracks in small, standard test pieces.  相似文献   

9.
R-curve behaviour in the microstructurally short crack regime has been reported mainly in ceramics, composites and polymers; this paper describes it for a metallic material: brittle cast and wrought T42 high speed steel. Continuum mechanics has demonstrated the general admissibility of sub-critical growth of cracks with a cohesive zone. Results now reported show that, in a metallic material, growth of microstructurally short cracks under monotonic loading, as in fatigue, is governed by microstructure (texture). Natural cracks, i.e. produced by the hot forging operation, or induced by the application of stress in the range 0.5 to 1.1 GPa in four-point bending experiments, of depths extending to 25μm were always associated with MC carbides. At comparable stress levels cracks were nucleated in compression -- surprisingly some transverse to the compressive axis. Observations of crack nucleation and subsequent studies of subcritical growth of these microcracks were made by surface replica microscopy. Crack extension was easy within the carbide stringers (a characteristic feature of hot-worked high speed steels), but, at higher stresses, took place between these bands to reach up to ∼ 100 μm (surface) length. Dormant cracks were shallow, no more than 6 μm deep; whereas those responsible for failure, at stresses ranging from 0.6 to 1.9 GPa, had a semicircular geomerty -- identified by scanning electron fractography. Step-wise monotonic subcritical crack growth is modelled asR -curves and it is shown that the maximum estimated (microscopic) applied stress intensity factor K a can vary from 0.5 to 1.0 K1C, the macroscopic fracture toughness independently determined using sharp artificial long cracks. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
11.
The accurate prediction of failure of sandwich structures using cohesive mixed-mode damage models depends on the accurate characterization of the cohesive laws under pure mode loading. In this work, a numerical and experimental study on the asymmetric double cantilever beam (DCB) sandwich specimen is presented with the objective to characterize the debonding fracture between the face sheet and the core under pure mode I. A data reduction method based on beam theory was formulated in such a way to incorporate the complex damaging phenomena of the debonding due to the material and geometric asymmetry of the specimen, via the consideration of an equivalent crack length (ae). Experimental DCB tests were performed and the proposed methodology was followed to obtain the debonding fracture energy (GIc). The experimental tests were numerically simulated and a cohesive damage model was employed to reproduce crack propagation. An inverse method was followed to obtain the local cohesive strength (σu,I) based on the fitting of the numerical and experimental load–displacement curves. With the value of fracture energy and cohesive strength defined, the cohesive law for interface mode I fracture is characterized. Good agreement between the numerical and the experimental R-curves validates the accuracy of the proposed data reduction procedure.  相似文献   

12.
The energy dissipation rate, R, is considered as a measure of resistance to crack extension in elasto-plastic fracture mechanics. It can be re-evaluated from JR test records of bend and tensile specimens. Three types of Ra)-curves are identified. If crack initiation occurs close to or at maximum load, the energy dissipation rate is decreasing with crack extension and approaches a stationary value. This type of Ra)-curves can be described by an exponential function with three parameters, namely the initial value, the final stationary value, and a transition length. The cumulative JR-curves for different specimen geometries can be derived by integration. The three parameters of the Ra)-fit together with an integration constant, the initiation value, Ji, characterize ductile fracture resistance both quantitatively and physically interpretable. Constraint effects on R-curves can be quantified in terms of these parameters. A procedure for transferring JR-curves from one geometry to another is proposed.  相似文献   

13.
Fatigue-crack-growth (FCG) rate tests were conducted on compact specimens made of an Inconel-718 alloy to study the behavior over a wide range in load ratios (0.1 ? R ? 0.95) and a constant Kmax test condition. Previous research had indicated that high R (>0.7) and constant Kmax test conditions near threshold conditions were suspected to be crack-closure-free and that any differences were attributed to Kmax effects. During a test at a load ratio of 0.7, strain gages were placed near and ahead of the crack tip to measure crack-opening loads from local load-strain records during crack growth. In addition, a back-face strain (BFS) gage was also used to monitor crack lengths and to measure crack-opening loads from remote load-strain records during the same test. The BFS gage indicated that the crack was fully open (no crack closure), but the local load-strain records indicated significant amounts of crack closure. The crack-opening loads were increasing as the crack approached threshold conditions at R = 0.7. Based on these measurements, crack-closure-free FCG data (ΔKeff against rate) were calculated. The ΔKeff-rate data fell at lower ΔK values and higher rates than the constant Kmax test results. In addition, constant R tests at extremely high R (0.9 and 0.95) were also performed and compared with the constant Kmax test results. The constant R test results at 0.95 agreed well with the ΔKeff-rate data, while the R = 0.9 data agreed well with constant Kmax test data in the low-rate regime. These results imply that the R = 0.7 test had a significant amount of crack closure as the threshold was approached, while the R = 0.9 and Kmax test results may have had a small amount of crack closure, and may not be closure free, as originally suspected. Under the high load-ratio conditions (R ? 0.7), it is suspected that the crack surfaces are developing debris-induced crack closure from contacting surfaces, which corresponded to darkening of the fatigue surfaces in the near-threshold regime. Tests at low R also showed darkening of the fatigue surfaces only in the near-threshold regime. These results suggest that the ΔKeff against rate relation may be nearly a unique function over a wide range of R in the threshold regime.  相似文献   

14.
To better understand the crack closure effect in the fatigue process, influence of fatigue stress amplitude and R ratio on the contact features of fracture surfaces in an annealed carbon steel was studied via two special experimental approaches: (i) the collection of the fracture debris fallen from the crack surfaces, and (ii) the direct observation of the contact zones on the fracture surface through an ink dyeing method. The results of this study show that the change of fatigue CMOD value as a function of a/W ratio depends strongly on the loading condition; the fatigue stress amplitude and R ratio are the major factors that determine the contacting status between the mating fracture surfaces; the severity of the fracture surface contact can also be characterized by the dropping rate of the fracture debris particles collected during the fatigue test.  相似文献   

15.
The crack tip model with the cohesive zone ahead of a finite crack tip has been presented. The estimation of the length of the cohesive zone and the crack tip opening displacement is based on the comparison of the local stress concentration, according to Westergaard's theory, with the cohesive stress. To calculate the cohesive stress, von Mises yield condition at the boundary of the cohesive zone is employed for plane strain and plane stress. The model of the stress distribution with the maximum stress within the cohesive zone is discussed. Local criterion of brittle fracture and modelling of the fracture process zone by cohesive zone were used to describe fracture initiation at the hydride platelet in the process zone ahead of the crack tip. It was shown that the theoretical K IH-estimation applied to the case of mixed plane condition within the process zone is qualitatively consistent with experimental data for unirradiated Zr-2.5Nb alloy. In the framework of the proposed model, the theoretical value of K H IC for a single hydride platelet at the crack tip has been also estimated.  相似文献   

16.
17.
Crack growth rate and crack closure during fatigue of type 304 stainless steel are measured with an optical microscope and television camera. Based on the crack closure data an effective stress intensity range ΔKeff is calculated. The da/dn vs ΔKeff-curves indicate that crack closure could account for the R-influence as normally derived from da/dn vs ΔK-curves. Measurements of striation spacing lead to the conclusion that at higher da/dn values crack growth mechanisms dependent on Kmax play an important role; these mechanisms are probably responsible for the R-influence in the range of the higher da/dn-values.  相似文献   

18.
The mode I and mode II asymptotic stresses around a notch tip are in general governed by different orders of singularity. Direct computation of the mixed-mode near-tip stress field therefore appears to be difficult. In this paper, we propose a pair of contour integrals JkR. The integrals are shown to be path-independent in a modified sense and so they can be accurately evaluated with finite element solutions. As an aside, by defining a pair of generalized stress intensity factors (SIFs) (KI)β and (KII)β, the relationship between JkR and the SIFs is derived and expressed as functions of the notch angle β. Once the JkR-integrals are accurately computed, the generalized SIFs and, consequently, the asymptotic mixed-mode stress field can then be properly determined. The feasibility of our formulation is demonstrated in two numerical examples, where various instances with different notch angles are considered. No particular singular elements are used in this study.  相似文献   

19.
A crack in a thin adhesive elastic-perfectly plastic layer between two identical isotropic elastic half-spaces is considered. Uniformly distributed normal stress is applied to the substrates at infinity. First, stress distribution in the cohesive zones and the J-integral values are defined numerically by the finite element method (FEM). Further, a mathematical formulation of the problem is given and its analytical solution is proposed. It is assumed that, at the crack continuations, there exist cohesive zones. The interlayer thickness is neglected since it is much smaller than the crack length. The distribution of the normal stress, which was obtained by means of the FEM, is now approximated by a piecewise-constant function and assumed to be applied at the faces of the cohesive zones. The formulated problem is solved analytically and an equation for determination of the cohesive zone lengths is derived. Also, closed expressions for the crack tip opening displacement and for the J-integral are obtained in an analytical form. These parameters are found with respect to the values of the normal stress applied at infinity. Finally, a universal approximating function, which describes the stress distribution in the cohesive zones, is constructed. This function depends on the ratio between the interlayer thickness and the crack length and on the ratio between the normal stress applied at infinity and the yield limit of the interlayer’s material. Once again, the problem is solved analytically, but this time for the stress distribution prescribed by the universal approximating function. The cohesive zone lengths, the values of the crack tip opening displacement and of the J-integral are calculated. A comparative analysis of the obtained results is carried out. A good agreement of the J-integral values calculated by means of the developed analytical models and by the associated finite element analysis is demonstrated.  相似文献   

20.
The centrally cracked Brazilian disc specimen has been used by many researchers to study mode I and mode II brittle fracture in different materials. However, the experimental results obtained in the past from this specimen indicate that the fracture toughness ratio (KIIc/KIc) is always significantly higher than the theoretical predictions. It is shown in this paper that the increase in the ratio KIIc/KIc can be predicted if a modified maximum tangential stress (MTS) criterion is used. The modified criterion takes into account the effect of T-stress in addition to the conventional singular stresses. The fracture toughness ratio KIIc/KIc is calculated for two brittle materials using the modified criterion and is compared with the relevant published experimental results obtained from fracture tests on the cracked Brazilian disc specimen. A very good agreement is shown to exist between the theoretical predictions and the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号