首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method of using screen-printed carbon electrodes (SPCEs) incorporating the electrocatalyst cobalt phthalocyanine (CoPC) for the manufacture of tubular microband electrodes for hydrogen peroxide detection is described. Characterisation of these electrodes using potassium ferrocyanide, with cyclic voltammetry, has shown that steady state behaviour is displayed which is indicative of microelectrode behaviour. The current density obtained from the voltammogram was compared to that obtained for a conventional sized CoPC-SPCE, and the values were 5618 and 35.65 μA cm−2, respectively. Cyclic voltammetry was carried out for the same electrodes, using 7 mM H2O2 prepared in phosphate buffer at scan rates between 1 and 50 mV s−1 and no significant increase in current response was observed. The application of these tubular microband CoPC-SPCEs, to the measurement of H2O2 using chronoamperometry was investigated. A calibration study was performed and the plot showed a sensitivity value of 252 μA mM−1 cm−2 and a lower detection limit of 70 μM. We have shown that the chronoamperometric current response could be calculated using a modified equation originally developed for a plain microband electrode. This study provides a platform for using screen-printed carbon electrodes for the fabrication of oxidase based microbiosensors, for the determination of a variety of cellular metabolites.  相似文献   

2.
Voltammetric characterization of electrochemical systems is very important with the aim of optimising a required application. In this case, different gold screen-printed electrodes have been evaluated. Although the use of carbon has widespread, gold is still in the beginning. Two different substrates: polycarbonate and alumina have been evaluated. Differences in morphology are clear when observed by SEM. Potassium ferricyanide, p-aminophenol, indigo carmine, silver nitrate and ferrocene have been chosen as model analytes. Potential scans can be made at scan rates as high as 2000 mV s−1 which could result very advantageous. Proportionality between peak current and concentration maintains at this scan rate as demonstrated with ferricyanide. Sensitivity is increased and linear dynamic ranges are widened when alternative electrochemical techniques (SWV and ACV) are employed. In the silver system in basic media, catalysis-mediated reduction is only possible on alumina electrodes since the potential window is very narrow in polymeric electrodes. The precision (intra and interelectrode) has been thoroughly evaluated. Reusability is possible since adequate RSDs are obtained when measurements are performed in different drops without cleaning in-between. On the other hand, low cost of fabrication makes disposability of electrodes an advantageous characteristic that avoids tedious cleaning treatments.  相似文献   

3.
A screen-printed carbon electrode modified with functionalized mesoporous silica nanoparticles (MTTZ-MSU-2) was developed and evaluated for reliable quantification of trace Pb(II) ions by anodic stripping square wave voltammetry in non-pretreated natural waters. The optimal operating conditions were 5 min preconcentration time and 120 s electrolysis time in HCl 0.2 M. The electrode displayed excellent linear behavior in the concentration range examined (1-30 μg L−1) with a limit of detection of 0.1 μg L−1. The screen-printed carbon modified electrode has long service time and good single and inter-electrode reproducibility. Applicability to spiked drinking water, river water and groundwater was demonstrated without any sample pre-treatment (recoveries between 97% and 106%, RSD 4-7%). On the basis of the present data, mercury-free screen-printed electrodes modified with functionalized mesoporous silicas have the potential to become the next-generation analyzers for decentralized heavy metal monitoring in environmental samples.  相似文献   

4.
Stable silver thin films were prepared either by chemical deposition or by argon sputtering on germanium and silicon substrates, respectively, and used as electrodes for in situ infrared spectroscopy experiments with a Kretschmann internal reflection configuration. The spectra obtained for acetate anions adsorbed from neutral solutions showed a noticeable intensity enhancement (SEIRA effect). This enhanced absorption has been related to the surface structure of the films that have been characterized by ex situ STM and in situ electrochemical measurements (lead underpotential deposition, UPD). STM images of the chemically deposited silver films show mean grain sizes ranging from ca. 20 to 90 nm for deposition times between 2 and 20 min, and the absence of flat domains. On the other hand, STM images of the films deposited by argon sputtering show mean grain sizes around 30 nm for a film growth rate of 0.05 nm s−1 and 70 nm for a film growth rate of 0.005 nm s−1. In this latter case, atomically flat domains up to 50 nm wide have been observed. This observation is consistent with a more defined voltammetric profile for lead UPD, that indicates a higher degree of surface order. Moreover, the roughness factor obtained from the charge density involved in lead UPD in the case of the sputtered silver film is lower than that measured for the chemically deposited silver film. All these structural data can be connected with the observations on the effect of deposition conditions of the silver film on the SEIRA effect for adsorbed acetate. Maximum enhancement is observed for chemically deposited films and sputtered films at high deposition rate for which the grain size is around 40-60 nm. The increase of the grain size for the sputtered silver films deposited at decreasing deposition rates can be related to the observed decrease in the SEIRA effect.  相似文献   

5.
This work describes the CO and methanol electrooxidation over an Ir/Pt bilayer electrodeposited on a platinum polycrystalline substrate. In the blank acidic solution it was observed that the electrochemical behavior of both the polycrystalline Pt and Pt/Ir/Pt nanostructured electrodes were very similar. The electroactive area, calculated using the hydrogen desorption method, are the same for both materials. In order to investigate the effect of the thickness change of Ir interlayer, two different samples were prepared. One with 1 Ir monolayer and the second with 3 monolayers thick. CO stripping voltammograms showed a shift in the anodic peak potential towards the negative direction of 160 and 180 mV for Pt/Ir/Pt 3:1 and 1:1 ML, respectively, compared to polycrystalline Pt. Besides, for methanol electrooxidation, the Pt/Ir/Pt electrodes presented an increase of 170% in the peak current density compared to polycrystalline Pt. These results are in agreement with the calculated activation energies which were 31.5, 39.0 and 43.5 kJ mol−1 for Pt/Ir/Pt 1:1, 3:1 ML and polycrystalline Pt electrodes, respectively. Using the electrochemical impedance spectroscopy, surprisingly, the Pt/Ir/Pt electrodes, did not exhibit the inductive arc which means that the poisoning of the electrode surface is not important in this case.  相似文献   

6.
A novel electroanalytical method for the detection of paraquat using DNA modified gold nanoparticles immobilized at a gold electrode is demonstrated. The electrode surface was first modified using the self-assembly of gold nanoparticles (NPs) followed by the simple adsorption of DNA onto the NPs, which was straightforward, fast and cost effective. The DNA-nanoparticle composite sensor was then characterized in terms of electrochemical responses both in the absence and in the presence of paraquat using cyclic voltammetry, differential pulse voltammetry and square wave voltammetry. The DNA-NPs composite electrode proved to work adequately as a biosensor for the quantitative analysis of paraquat concentrations, taking advantage of utilizing both the modified gold nanoparticles and the interaction between DNA with paraquat molecules. In addition, the NPs modified electrode demonstrated good sensitivity and stability towards the first reversible reduction step of the double charged paraquat ion. Good linearity between paraquat concentration and peak current was observed for the concentration range of 5.0 × 10−6 to 1.0 × 10−3 M when using differential pulse voltammetry. The use of modified electrodes improves the performance of the biosensor in the presence of interfering species in particular when square wave voltammetry is used.  相似文献   

7.
The main purpose of this study was to investigate the removal of the chemical oxygen demand (COD) from olive mill wastewater (OMW) by the combination of ultrafiltration with electrocoagulation process. Ultrafiltration process equipped with CERAVER membrane was used as pre-treatment for electrochemical process. The obtained permeate from the ultrafiltration process allowed COD removal efficiency of about 96% from OMW. Obtained permeate with an average COD of about 1.1 g dm−3 was treated by electrochemical reactor equipped with a reactor with bipolar iron plate electrodes. The effect of the experimental parameters such as current density, pH, surface electrode/reactor volume ratio and NaCl concentration on COD removal was assessed. The results showed that the optimum COD removal rate was obtained at a current density of 93.3 A m−2 and pH ranging from 4.5 to 6.5. At the optimum operational parameters for the experiments, electrocoagulation process could reduce COD from 1.1 g dm−3 to 78 mg dm−3, allowing direct discharge of the treated OMW as that meets the Algerian wastewater discharge standards (<125 mg dm−3).  相似文献   

8.
The electrocatalytic activity for the oxygen reduction reaction (ORR) of different shape-controlled gold nanoparticles (NPs) and nanorods has been studied by scanning electrochemical microscopy (SECM). TEM images and lead underpotential deposition (UPD) voltammetric profiles were used to physically and electrochemically characterize all gold particles studied here, providing information on the shape and surface structure of the different NPs and nanorods. The SECM results demonstrate that cubic gold NPs are the most active towards ORR in 0.1 M NaOH, followed by the spherical gold NPs and, finally, by the short gold nanorods. These results are in agreement with previous studies using conventional electrochemical techniques with gold NPs and single crystal electrodes, since they established that higher ratio of (1 0 0) domains provide higher catalytic activity for ORR.  相似文献   

9.
The effect of Bi(III) concentration (over the wide concentration range of 10−7 to 10−4 M) on the determination of Pb and Cd metal ions (in the 10−8 to 10−5 M range), by means of anodic stripping voltammetry (ASV) at in situ bismuth-coated carbon paste (CPE) and gold electrodes, has been studied. It is shown that in square wave anodic stripping voltammetry (SWASV) experiments the sensitivity of the technique generally depends on the Bi(III)-to-metal ion concentration ratio. It was found that, unlike the usually recommended at least 10-fold Hg(II) excess in anodic stripping experiments at in situ prepared mercury film electrodes, Bi(III)-to-metal ion ratios less than 10 are either optimal or equally effective at CPE and Au electrode substrates. Detection limits down to 0.1 μg L−1 for Pb(II) and 0.15 μg L−1 for Cd(II) were estimated at CPEs under conditions of small or moderate Bi(III) excess. Depending on Bi(III) concentration and deposition time, multiple stripping peaks attributed to Bi were recorded (especially in the case of Au substrates), indicating various forms of Bi deposits.  相似文献   

10.
Electro-oxidation of methanol has been investigated on activated, rough gold electrodes in alkaline solutions. The electrodes were activated by formation and decomposition of gold amalgam. The oxidation of methanol starts at potentials about 400 mV less positive as compared with smooth poly and single crystal gold electrodes and the oxidation current is much higher. For freshly prepared, activated gold electrodes the oxidation current is similar to that obtained on smooth platinum, however it diminishes with time. The formation of small crystallites, which could trap OH anions, seems to be the most important factor for this unusual catalytic activity. The dependence of the oxidation process on electrode topography is discussed.  相似文献   

11.
The electrochemical decoration of edge plane pyrolytic graphite electrode (EPPGE) with cobalt and cobalt oxide nanoparticles integrated with and without single-walled carbon nanotubes (SWCNTs) is described. Successful modification of the electrodes was confirmed by field emission scanning electron microscopy (FESEM), AFM and EDX techniques. The electron transfer behaviour of the modified electrodes was investigated in [Fe(CN)6]3−/4− redox probe using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) and discussed. The study showed that cobalt nanoparticles modified electrodes exhibit faster electron transfer behaviour than their oxides. The catalytic rate constant (K) obtained at the EPPGE-SWCNT-Co for nitrite at pH 7.4 and 3.0 are approximately the same (∼3 × 104 cm3 mol−1 s−1) while the limits of detection (LoD = 3.3δ/m) are in the μM order. From the adsorption stripping voltammetry, the electrochemical adsorption equilibrium constant β was estimated as (13.0 ± 0.1) × 103 M−1 at pH 7.4 and (56.7 ± 0.1) × 103 M−1 at pH 3.0 while the free energy change (ΔG°) due to the adsorption was estimated as −6.36 and −10.00 kJ mol−1 for nitrite at pH 7.4 and 3.0, respectively.  相似文献   

12.
A monolayer of -NH2 terminated 3-aminopropyltriethoxysilane (APS) was self-assembled onto a p-type silicon (1 0 0) substrate. This amine terminated silane monolayer provided an electrostatic point of attachment for citrate stabilised gold colloid nanoparticles, which act as ‘seed’ particles for the electroless deposition of gold, creating an electrolessly deposited gold layer on silicon. A -NH2 terminated cysteamine monolayer was then deposited onto the gold layer and carbon nanotubes, with high carboxylic acid functionality, were immobilised via a condensation reaction. A redox active molecule ferrocenemethanol was then chemically attached to the immobilised carbon nanotubes. These nanostructures were used as working electrodes in cyclic voltammetry to observe the oxidation and reduction of ferrocene. Important electrochemical parameters such as electrode kinetics, electron transfer rate and surface concentration of the redox active molecules were obtained, providing information on the ability of electroless plated gold surfaces to act as supports for carbon nanotube-based electrodes. This information has also provided insights into the behaviour of vertically aligned carbon nanotubes immobilised on nanoscale gold wires, which have been previously fabricated using atomic force microscopy.  相似文献   

13.
The construction by sequential self-assembly process of reproducible, highly stable and pH-responsive redox-active nanostructured arrays of single-walled carbon nanotubes (SWCNTs) integrated with octa(hydroxyethylthio)phthalocyaninatoiron(II) (FeOHETPc) via ester bonds on a gold surface (Au-Cys-SWCNT-FeOHETPc) is investigated and discussed. The successful construction of this electrode is confirmed using atomic force microscopy and X-ray photoelectron spectroscopy as well as from the distinct cyclic voltammetric and electrochemical impedance spectroscopic profiles. The Au-Cys-SWCNT-FeOHETPc electrode exhibited strong dependence on the reaction of the head groups and the pH of the working electrolytes, the surface pKa is estimated as 7.3. The high electron transfer capability of the Au-Cys-SWCNT-FeOHETPc electrode over other electrodes (Au-Cys-SWCNT or the Au-Cys-FeOHETPc or the Au-FeOHETPc) suggests that SWCNT greatly improves the electronic communication between FeOHETPc and the bare gold electrode. The electron transfer rate constant (kapp) of Au-Cys-SWCNT-FeOHETPc in pH 4.8 conditions (∼1.7 × 10−2 cm−2 s−1) over that of the electrode obtained from SWCNT integrated with tetraaminophthalocyninatocobalt(II) (Au-Cys-SWCNT-CoTAPc) (5.1 × 10−3 cm−2 s−1) is attributed to the possible effect of the central metal on the phthalocyanine core and substituents on the peripheral positions of the phthalocyanine rings. We also prove that aligned SWCNT arrays exhibit much faster electron transfer kinetics to redox-active species in solutions compared to the randomly dispersed (drop-dried) SWCNTs.  相似文献   

14.
A novel ITO electrode surface modified with spherical and rod-shaped gold nanoparticles was prepared by a surfactant-assisted seeding growth approach, which provided a biocompatible matrix for the immobilization of hemoglobin (Hb). By electrochemical impedance measurements, gold nanoparticles modification and Hb immobilization on the electrode surfaces were characterized using [Fe(CN)6]3−/[Fe(CN)6]4− redox probe. Owing to the promoted electron transfer of Hb by gold nanoparticles, the Hb immobilized gold nanoparticles-modified ITO (Hb/Au/ITO) electrode exhibited an effective catalytic response to the reduction of H2O2 with good reproducibility and stability. The linear relationship existed between the catalytic current and the H2O2 concentration in the range of 1 × 10−5 to 7 × 10−3 M. The detection limit (S/N = 3) was 4.5 × 10−6 M.  相似文献   

15.
A novel ethanol biosensor based on the bulk incorporation of alcohol dehydrogenase (ADH) into a colloidal gold (Aucoll)-multiwalled carbon nanotubes (MWCNTs) composite electrode using Teflon as binding material is reported. The composite Aucoll-MWCNTs-Teflon electrode exhibited significantly improved electrooxidation of NADH when compared with other carbon composite electrodes, including those based on carbon nanotubes. Amperometric measurements for NADH at +0.3 V showed significant differences in sensitivity between Aucoll-MWCNTs-Teflon and MWCNTs-Teflon composite electrodes. Incorporation of ADH into the bulk electrode material allowed the construction of a mediatorless ethanol biosensor. Both the enzyme loading and the NAD+ concentration in solution were optimized. The ADH-Aucoll-MWCNTs-Teflon biosensor allowed a limit of detection for ethanol of 4.7 μmol l−1, which is remarkably better than those reported for other CNTs-based ADH biosensors. The apparent Michaelis-Menten constant was 4.95 mmol l−1, which is much lower than that reported by immobilization of ADH onto a gold electrode. Both repeatability of the ethanol amperometric measurements, reproducibility with different biosensors, lifetime and storage ability can be, in general, advantageously compared with other ADH-CNTs biosensors. The biosensor was applied for the rapid determination of ethanol in commercial and certified beer samples.  相似文献   

16.
A novel electrochemical immunosensor for sensitive detection of ochratoxin A (OTA) was reported. An electrochemical and chemical reaction protocol was elaborated to modify the gold electrode. A screen-printed gold electrode (SPGE) was modified with a layer of 4-nitrophenyl, assembled from 4-nitrophenyl diazonium salt synthesized in situ in acidic aqueous solution. Next, the nitro groups were electrochemically reduced to amines followed by activation with glutaraldehyde to give a stable intermediate derivative that covalently binds antibodies against OTA during the second step, thereby tailoring an immunosensor for ochratoxin A. The utility of the electrochemical immunosensor for a competitive immunoassay was demonstrated. A competition between OTA and fixed concentration of a horseradish peroxidase-labeled OTA (OTA-HRP) for the immobilized antibodies was realized. The activity of the bound OTA-HRP was electrochemically measured by chronoamperometry (CA) using 3,3′,5,5′-tetramethylbenzidine (TMB) as substrate. The immunosensor obtained using this novel approach enabled a detection limit of 12 ng mL−1 and a dynamic range up to 60 ng mL−1 of OTA. Precision, accuracy and stability studies were satisfactory for the developed immunosensor.  相似文献   

17.
Nanostructured surfaces have recently gained in importance for electrochemical applications because of an enhanced surface area compared to planar substrates. Due to this property, structured substrates are well suited for electrochemical (bio-)sensors, capacitive coupling with electrogenic cells, and other bioelectronic applications. However, the relationship between electrolytically exposed and redox-active surface areas of nanostructured electrodes compared to planar electrodes is still under discussion. Here, we performed a series of comparative studies to elucidate processes taking place at the electrochemically active surface of gold nanopillars. The pillars, approximately 200 nm in height and 50 nm in diameter, were fabricated using template-assisted nanostructuring. The surface area increase compared to planar electrodes was determined by scanning electron microscopy (SEM), and the redox-active surface area of the same sample was derived from cyclovoltammetric studies. We found consistency between the SEM results and the electrochemically active surfaces determined by cyclic voltammetry of immobilized ferrocenylhexanethiol, immobilized cytochrome c, and oxidation/reduction of gold for small scan rates. Similar values were derived from the capacitance measured by cyclic voltammetry, whereas impedimetric measurements revealed values twice as high. Commonly used diffusion-controlled systems, such as hexacyanoferrate, showed a smaller increase of the electroactive surface area. Finally, we conclude that the sterically restricted diffusion of redox-active species leads to an inaccurate determination of the electroactive surface area of nanosized electrodes.  相似文献   

18.
A novel conductive composite film containing functionalized multi-walled carbon nanotubes (f-MWCNTs) with poly (neutral red) (PNR) was synthesized on glassy carbon electrodes (GC) by potentiostatic method. The composite film exhibited promising electrocatalytic oxidation of mixture of biochemical compounds such as ascorbic acid (AA), dopamine (DA) and uric acid (UA) in pH 4.0 aqueous solutions. It was also produced on gold electrodes by using electrochemical quartz crystal microbalance technique, which revealed that the functional properties of composite film were enhanced because of the presence of both f-MWCNTs and PNR. The surface morphology of the polymer and composite film deposited on transparent semiconductor tin oxide electrodes were studied using scanning electron microscopy and atomic force microscopy. These two techniques showed that the PNR was fibrous and incorporated on f-MWCNTs. The electrocatalytic responses of neurotransmitters at composite films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). These experiments revealed that the difference in f-MWCNTs loading present in the composite film affected the electrocatalysis in such a way, that higher the loading showed an enhanced electrocatalytic activity. From further electrocatalysis studies, well separated voltammetric peaks were obtained at the composite film modified GC for AA, DA and UA with the peak separation of 0.17 V between AA-DA and 0.15 V between DA-UA. The sensitivity of the composite film towards AA, DA and UA in DPV technique was found to be 0.028, 0.146 and 0.084 μA μM−1, respectively.  相似文献   

19.
In this work, we studied the electrochemical process of 2,4,6-trinitrotoluene (TNT) reduction on a new type of electrodes based on a core-shell tin-carbon Sn(C) structure. The Sn(C) composite was prepared from the precursor tetramethyl-tin Sn(CH3)4, and the product contained a core of submicron-sized tin particles uniformly enveloped with carbon shells. Cyclic voltammograms of Sn(C) electrodes in aqueous sodium chloride solutions containing TNT show three well-pronounced reduction waves in the potential range of −0.50 to −0.80 V (vs. an Ag/AgCl/Cl reference electrode) that correspond to the multistep process of TNT reduction. Electrodes containing Sn(C) particles annealed at 800 °C under argon develop higher voltammetric currents of TNT reduction (comparing to the as-prepared tin-carbon material) due to stabilization of the carbon shell. It is suggested that the reduction of TNT on core-shell tin-carbon electrodes is an electrochemically irreversible process. A partial oxidation of the TNT reduction products occurred at around −0.20 V. The electrochemical response of TNT reduction shows that it is not controlled by the diffusion of the active species to/from the electrodes but rather by interfacial charge transfer and possible adsorption phenomena. The tin-carbon electrodes demonstrate significantly stable behavior for TNT reduction in NaCl solutions and provide sufficient reproducibility with no surface fouling through prolonged voltammetric cycling. It is presumed that tin nanoparticles, which constitute the core, are electrochemically inactive towards TNT reduction, but Sn or SnO2 formed on the electrodes during TNT reduction may participate in this reaction as catalysts or carbon-modifying agents. The nitro-groups of TNT can be reduced irreversibly (via two possible paths) by three six-electron transfers, to 2,4,6-triaminotoluene, as follows from mass-spectrometric studies. The tin-carbon electrodes described herein may serve as amperometric sensors for the detection of trace TNT.  相似文献   

20.
Liquid crystalline and micellar aqueous solutions of the nonionic surfactant Triton X-100 were used to direct the electrodeposition of Pt-Ru nanoparticles onto graphite felts, which were investigated as novel anodes for the direct methanol fuel cell. The effects of surfactant concentration, current density and deposition time in the preparation of these three-dimensional electrodes were studied in a factorial experiment and the electrodes were characterized by SEM and ICP-AES. Cyclic voltammetry, chronoamperometry and chronopotentiometry were carried out to assess the activity of the catalyzed felts for methanol oxidation. The presence of Triton X-100 (40-60 wt.%) coupled with an acidic plating solution were essential for the efficient co-electrodeposition of Ru in the presence of Pt to yield approximately a 1:1 Pt:Ru atomic ratio in the deposit. The highest mass specific activity, 24 A g−1 at 298 K (determined by chronoamperometry after 180 s at 0 V versus Hg/Hg2SO4, K2SO4std), was obtained for the Pt-Ru electrodeposited in the presence of 40 wt.% Triton X-100 at 60 A m−2, 298 K for 90 min. Surfactant mediated electrodeposition is a promising method for meso-scale (ca. 10-60 nm diameter) catalyst particle preparation on three-dimensional electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号