首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
乙二胺四乙酸二钠修饰碳糊电极测定铜(Ⅱ)   总被引:1,自引:0,他引:1  
毛晓明  靳永胜 《应用化工》2009,38(9):1378-1380
制备了乙二胺四乙酸二钠(EDTA)修饰碳糊电极并研究了铜在该电极上的阳极溶出伏安行为,提出了一种测定铜的新方法。实验发现,在pH=3.6的醋酸钠-醋酸缓冲溶液中,铜离子于-500 mV(vs.SCE)处被吸附还原,富集在该修饰电极表面。从-150 mV以120 mV/s的速率正向扫描至200 mV,铜在约90 mV处出现一灵敏的阳极溶出峰。峰电流与铜的浓度在1.0×10-8~2.0×10-6mol/L范围内呈良好的线性关系,检出限为1.0×10-9mol/L。并进行了回收率测试,回收率为93%~105%,相对标准偏差小于4%。  相似文献   

2.
The deposition and stripping processes of lead and copper and cadmium ions over the wide concentrations range of 1 × 10−5 to 5 × 10−9 M, have been studied at mercury film deposited on wax impregnated carbon paste electrode, using cyclic voltammetry, linear sweep anodic stripping voltammetry and differential pulse anodic stripping voltammetry. The carbon paste electrode modified with the mercury film was characterized for its physical and electrochemical properties. The parameters of deposition and stripping processes of the analytes have been investigated using standard solution of the metal ions at various concentrations and different supporting electrolytes and different pH. The linear sweep anodic stripping has been adopted for the determination of analytes at higher concentration whereas the analytes at lower concentrations were determined using DPASV. The DPASV behavior for the ions studied dependent on concentrations of the analyte as well as on the time used in the pre-concentration step. The method developed using standard solutions have been successfully applied for the determination of Cu(II), Pb(II) and Cd(II) in Fin Fish muscles and water samples.  相似文献   

3.
Conducting polypyrrole membranes were deposited on glassy carbon electrodes by electropolymerizing pyrrole in the presence of Eriochrome Blue-Black B (EBB) as the counter anion. The electrodes were then subjected to several oxidation/reduction potential steps in pure silver nitrate solution for successive accumulation/stripping of silver species. This electrochemically mediated doping/templating generated selective recognition elements in the EBB/PPy film for silver ions. The resulting sensor exhibited a considerable enhancement in the potentiometric and voltammetric response characteristics: extending the linear dynamic range and lowering the detection limit. In the potentiometric mode, the sensor showed highly reproducible response with a Nernstian slope of 58.5 ± 0.3 mV per decade of Ag+ activity over a linear range spanning seven orders of magnitude (1 × 10−8 to 1 × 10−1 M Ag+), with a detection limit of ∼6 × 10−9 M. The electrodes demonstrated high selectivity over a large number of cations including alkali, alkaline earth and several transition and heavy metal ions, and could be used over a wide pH range of 1-8.5. The EBB/PPy modified electrode was also used for preconcentration and differential pulse anodic stripping voltammetric (DPASV) measurements. The DPASV peak current was dependent on the concentration of Ag+ over the range 3 × 10−10 to 1 × 10−4 M. The presence of 1000-fold excess of Cd2+, Cu2+, Cr3+, Co2+, Mn2+, Fe2+, Fe3+, Ni2+ and Pb2+ can be tolerated in the determination of silver ion.  相似文献   

4.
In the present work, the influence of several metals (Co, Ru, Pd, Os, Pt, Cu, Pb), deposited on a carbon paste electrode, towards silver electrodeposition was tested. First, adequate conditions for the electrodeposition of metals on the electrode were found. Then, the cyclic voltammograms registered (silver deposition curves and analytical signals) showed that Co, Cu, Pt and Pd were able to accelerate silver electrodeposition. Finally, a valid methodology for the detection of cisplatin was established. It is based on the deposition of silver on a Pt (from cisplatin) modified electrode and the analytical signal corresponds to the anodic stripping of the deposited silver. A limit of detection of 3.2 × 10−9 mol dm−3 (1 ng cm−3) cisplatin was obtained.  相似文献   

5.
Ivana Cesarino 《Fuel》2010,89(8):1883-1888
A graphite-polyurethane composite modified with 2-benzothiazolethiol organofunctionalized silica was evaluated as an alternative electrode in the determination of Cu2+ ions in ethanol fuel samples, on the basis of a differential pulse anodic stripping voltammetry procedure. This metal can be quantified by mixing ethanol fuel with 0.10 mol L−1 KNO3 aqueous solution and subsequent voltammetric measurement after the accumulation step. A maximum limit of 70% (v/v) ethanol in potassium nitrate aqueous solution was obtained for voltammetric measurements without loss of sensitivity for metal species. Factors affecting the pre-concentration and stripping steps were investigated and optimum conditions were employed to develop the analytical procedure. Using 20 min of accumulation time, the linear range of 0.1-1.2 μmol L−1 was obtained with the limit of detection of 3.9 × 10−8 mol L−1. The developed electrode was successfully applied to determine Cu2+ in commercial ethanol fuel samples. The proposed method was compared with a traditional analytical technique, the flame atomic absorption spectrometry, and no significant differences between the results obtained by both methods were observed according to statistical evaluation.  相似文献   

6.
In this work, monomer solutions of aniline (ANI) and 2,2′-dithiodianiline (DTDA), an aniline derivative containing -S-S- links, were prepared and used in the electrochemical copolymerisation of ANI and DTDA by cyclic voltammetry on a screen-printed electrode (SPE) in 1 M HCl. Electropolymerisation of aniline on the surface of the screen-printed working electrode was performed by sweeping the potential between −500 and + 1100 mV (vs. Ag/AgCl) at a sweep rate of 100 mV/s. Electrocopolymerisation was performed with a mixture of ANI and DTDA by sweeping the potential between −200 and + 1100 mV (vs. Ag/AgCl) at a sweep rate of 100 mV/s [J.L. Hobman, J.R. Wilson, N.L. Brown, in: D.R. Lovley (Ed.), Environmental Microbe Metal Interactions, ASM Press, Herndon, Va, 2000, p. 177]. The cyclic voltammogram (CV) for each of the electrochemically deposited polyaniline (PANI) and the mixture of ANI and DTDA for the co-polymer polymerisation on SPCE were recorded for electrochemical analysis of the peak potential data for the mono and copolymer. Anodic stripping voltammetry (ASV) was used to evaluate a solution composed of (1 × 10−6 M HgCl2, 0.1 M H2SO4, 0.5 M HCl), in the presence of the co-polymer sensor electrode. The Hg2+ ions were determined as follows: (i) pre-concentration and reduction on the modified electrode surface and (ii) subsequent stripping from the electrode surface during the positive potential sweep. The experimental conditions optimised for Hg2+ determination included the supporting electrolyte concentration and the accumulation time. The results of the study have shown the use of a conducting polymer modified SPCE as an alternative transducer for the voltammetric stripping and analysis of inorganic Hg2+ ions.  相似文献   

7.
The simultaneous measurement of microgram per liter concentration levels of indium(III), thallium(I) and zinc(II) at the antimony film carbon paste electrode (SbF-CPE) is demonstrated. The antimony film was deposited in situ on a carbon paste substrate electrode and employed in chronopotentiometric stripping mode in deoxygenated solutions of 0.01 M hydrochloric acid (pH 2). The chronopotentiometric stripping performance of the SbF-CPE was studied and compared with constant current chronopotentiometric stripping and anodic stripping voltammetric operation. In comparison with its bismuth and mercury counterparts, the SbF-CPE exhibited advantageous electroanalytical performance; namely, at the bismuth film electrode, the measurement of zinc(II) was practically impossible due to hydrogen evolution, whereas the mercury film electrode exhibited a poorly developed signal for thallium(I). The SbF-CPE revealed favorable calculated LoDs (3σ) of 1.4 μg L−1 for thallium(I) and 2.4 μg L−1 for indium(III) along with good linear response in the examined concentration range from 10 to 100 μg L−1 with correlations coefficients (R2) of 0.992 for thallium(I) and 0.994 for indium(III) associated with a 120 s deposition time. The chronopotentiometric stripping performance of the SbF-CPE was characterized also by satisfactory reproducibility of 1.62% for indium(III), 3.96% for thallium(I) and 2.11% for zinc(II) (c = 40 μg L−1, n = 11).  相似文献   

8.
The influence of potential on the anodic dissolution of SIMFUEL (doped uranium dioxide) has been characterized over the range 0-500 mV (versus SCE). Cathodic stripping voltammetry was used to determine the changes in surface reactivity of UO2 in neutral solutions after different anodic oxidation timescales. Scanning electron microscopy (SEM) was used to view the damage to the SIMFUEL electrode surface which was minimal at E < 200 mV but present as local pits and eroded grains after oxidation at higher potentials. Long-term anodic oxidation at potentials below 200 mV suggests that local acidification can develop within surface asperities in the fuel and pores in corrosion product deposits accumulated on the electrode surface.  相似文献   

9.
The effect of Bi(III) concentration (over the wide concentration range of 10−7 to 10−4 M) on the determination of Pb and Cd metal ions (in the 10−8 to 10−5 M range), by means of anodic stripping voltammetry (ASV) at in situ bismuth-coated carbon paste (CPE) and gold electrodes, has been studied. It is shown that in square wave anodic stripping voltammetry (SWASV) experiments the sensitivity of the technique generally depends on the Bi(III)-to-metal ion concentration ratio. It was found that, unlike the usually recommended at least 10-fold Hg(II) excess in anodic stripping experiments at in situ prepared mercury film electrodes, Bi(III)-to-metal ion ratios less than 10 are either optimal or equally effective at CPE and Au electrode substrates. Detection limits down to 0.1 μg L−1 for Pb(II) and 0.15 μg L−1 for Cd(II) were estimated at CPEs under conditions of small or moderate Bi(III) excess. Depending on Bi(III) concentration and deposition time, multiple stripping peaks attributed to Bi were recorded (especially in the case of Au substrates), indicating various forms of Bi deposits.  相似文献   

10.
A new type of the antimony electrode based on a carbon paste bulk-modified with antimony powder (Sb-CPE) is presented for the determination of cadmium(II) and lead(II) ions at the microgram-per-liter concentration level, when using square-wave anodic stripping voltammetric or stripping chronopotentiometric protocol. The Sb-CPE was prepared by mixing fine antimony powder, carbon powder, and silicon oil, thus combining typical features of the carbon paste material with specific electrochemical properties of antimony. Key-operational parameters, including the amount of antimony powder in the carbon paste mixture, effect of the deposition potential and deposition time, were optimized and electroanalytical performance of the Sb-CPE in nondeaerated solution of 0.01 M hydrochloric acid (pH 2) was compared with related bismuth powder-modified carbon paste electrode (Bi-CPE) and with in situ prepared antimony film carbon paste electrode (SbF-CPE). The electrode of interest exhibited well-developed signals and highly linear calibration plots for both metal ions tested. In addition, favorable limits of detection were achieved; namely: 1.4 μg L−1 for Cd(II) and 0.9 μg L−1 for Pb(II). The applicability of the new electrode was demonstrated on the analysis of tap water (spiked sample). Besides voltammetric measurements, the Sb-CPE was preliminary tested also under chronopotentiometric stripping mode in deoxygenated solutions, revealing also an excellent electroanalytical performance.  相似文献   

11.
Herein, a sensitive square wave voltammetric (SWV) method is described for the quantitative determination of an anticancer drug, 6-thioguanine (6-TG). The interaction of 6-TG with double stranded DNA (ds-DNA) in the solution phase resulted in a well amplified SWV response at the surface of hanging mercury dropping electrode (HMDE). Accumulation and stripping steps were made in the sample medium conditioned with acetate buffer (pH 4.8). Optimized conditions for the accumulation step included the deposition potential at −0.10 V, a deposition time of 30 s, a frequency of 50 Hz, a pulse amplitude of 20 mV, and a step potential of 7 mV. In the solution containing 2.0 mg L−1 ds-DNA, determination was performed within a wide concentration range of 2.4 × 10−9 to 1.8 × 10−5 mol L−1, and a detection limit of 2.1 nmol L−1 6-TG. An overall conclusion was that the intercalation of 6-TG into ds-DNA in a solution medium of the acetate buffer is a possible reason for the observed behavior. The method was applied for the determination of 6-TG in 6-thioguanine tablets and spiked blood serum samples. No statistically significant differences were observed between the expected and obtained concentrations. The new method is sufficiently sensitive to detect ultra trace amounts of 6-TG content.  相似文献   

12.
The antimony film carbon paste electrode (SbF-CPE) was prepared in situ on the carbon paste substrate electrode as a “mercury-free” electrochemical sensor. Its aptitude for measuring some selected trace heavy metals has been demonstrated in combination with square-wave anodic stripping voltammetry in non-deaerated model solutions of 0.01 M hydrochloric acid with pH 2. Some important operational parameters, such as deposition potential, deposition time, and concentration of antimony ions were optimized, and the electroanalytical performance of the SbF-CPE was critically compared with both bismuth film carbon paste electrode (BiF-CPE) and mercury film carbon paste electrode (MF-CPE) using Cd(II) and Pb(II) as test metal ions. In comparison with BiF-CPE and MF-CPE, the SbF-CPE exhibited superior electroanalytical performance in more acidic medium (pH 2) associated with favorably low hydrogen evolution, improved stripping response for Cd(II), and moreover, stripping signals corresponding to Cd(II) and Pb(II) at the SbF-CPE were slightly narrower than those observed at bismuth and mercury counterparts. In addition, the comparison with antimony film electrode prepared at the glassy carbon substrate electrode displayed higher stripping current response recorded at the SbF-CPE. The newly developed sensor revealed highly linear behavior in the examined concentration range from 5 to 50 μg L−1, with limits of detection (3σ) of 0.8 μg L−1 for Cd(II), and 0.2 μg L−1 for Pb(II) in connection with 120 s deposition step, offering good reproducibility of ±3.8% for Cd(II), and ±1.2% for Pb(II) (30 μg L−1, n = 10). Preliminary experiments disclosed that SbF-CPE and MF-CPE exhibit comparable performance for measuring trace concentration levels of Zn(II) in acidic medium with pH 2, whereas its detection with BiF-CPE was practically impossible. Finally, the practical applicability of SbF-CPE was demonstrated via measuring Cd(II) and Pb(II) in a real water sample.  相似文献   

13.
The differential pulse adsorptive stripping voltammetric behavior of selenium (IV)-p-aminobenzene sulfonic acid-cetyltrimethylammonium bromide system at a bismuth-coated glassy carbon electrode (BiFE) has been investigated. A well-defined and sensitive stripping peak of the selenium (IV)-p-aminobenzene sulfonic acid complex was observed at −0.76 V (vs. SCE) in a 0.15 mol/L acetate solution (pH 2.9) at a deposition potential of −0.40 V (for 120 s). The linear range was 2-30 μg/L and the detection limit for an accumulation time of 300 s was 0.1 μg/L. This method was applied to determine the trace amount of selenium in the samples.  相似文献   

14.
An electrochemical biosensor was constructed based on the immobilization of myoglobin (Mb) in a composite film of Nafion and hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) for a modified carbon paste electrode (CPE). Direct electrochemistry of Mb in the Nafion-BMIMPF6/CPE was achieved, confirmed by the appearance of a pair of well-defined redox peaks. The results indicate that Nafion-BMIMPF6 composite film provided a suitable microenvironment to realize direct electron transfer between Mb and the electrode. The cathodic and anodic peak potentials were located at −0.351 V and −0.263 V (vs. SCE), with the apparent formal potential (Ep) of −0.307 V, which was characteristic of Mb Fe(III)/Fe(II) redox couples. The electrochemical behavior of Mb in the composite film was a surface-controlled quasi-reversible electrode process with one electron transfer and one proton transportation when the scan rate was smaller than 200 mV/s. Mb-modified electrode showed excellent electrocatalytic activity towards the reduction of trichloroacetic acid (TCA) in a linear concentration range from 2.0 × 10−4 mol/L to 1.1 × 10−2 mol/L and with a detection limit of 1.6 × 10−5 mol/L (3σ). The proposed method would be valuable for the construction of a third-generation biosensor with cheap reagents and a simple procedure.  相似文献   

15.
A new voltammetric sensor for caffeine measurement is introduced. A caffeine-selective molecularly imprinted polymer (MIP) and a non-imprinted polymer (NIP) were synthesized and then used for carbon paste (CP) electrode preparation. The MIP, embedded in the carbon paste electrode, functioned as a selective recognition element and a pre-concentrator agent for caffeine determination. The prepared electrode was used for caffeine measurement via a three-step procedure including analyte extraction in the electrode, electrode washing and electrochemical measurement of caffeine. The MIP-CP electrode showed very high recognition ability in comparison to NIP-CP. It was shown that electrode washing after caffeine extraction led to enhanced selectivity. Differential pulse voltammetry for caffeine determination was more effective than square wave voltammetry. Some parameters affecting sensor response were optimized, and a calibration curve was then plotted. A linear range of 6 × 10−8 to 2.5 × 10−5 mol L−1 was obtained. The detection limit of the sensor was calculated to be equal to 1.5 × 10−8 mol L−1. This sensor was used successfully for caffeine determination in spiked beverage and tea samples.  相似文献   

16.
The voltammeric behavior of the herbicide cyclosulfamuron has been studied by square wave stripping voltammetry (SWSV). Cyclosulfamuron was reduced on a static mercury drop electrode (SMDE) and gave a well-defined peak in the pH range of 3.0-7.0. The peak potential (Ep) shifts to a more negative potential with increasing pH. The ratio ΔEp/ΔpH over the pH range studied was 59.5 mV/pH. A systematic study of the various experimental parameters that affect the stripping response was studied by SWV. The square wave parameters used were a frequency of 150 Hz, an amplitude of −60 mV and a staircase step of 6.0 mV. The quantifications were performed by the standard addition method, from the SW voltammetric peak obtained at −1348 mV. Calibration curves were linear in the range of 10-350 μg L−1 with a detection limit of 3.5 μg L−1 under the conditions used (pH 6.0 buffer solution, Eacc = −400 mV vs. Ag/AgCl, tacc = 75 s). The validity of the developed methodology was assessed by recovery experiments at the 25-100 μg L−1 level. The mean results for 3 determinations were 49.7 ± 3.3 μg L−1, which is very close to the amount of cyclosulfamuron added to soil (50 μg L−1), with a recovery of 99.4%. The sufficiently good recoveries and low relative standard deviation (RSD) data reflects the high accuracy and precision of the proposed SW voltammetric method. The possible influences of various inorganic species and other pesticides were also investigated.  相似文献   

17.
Liping Wang 《Electrochimica acta》2006,51(26):5961-5965
The electrochemical behaviour of the anticancer herbal drug emodin was investigated by cyclic voltammetry (CV) at glassy carbon electrode. In 0.05 M NH3-NH4Cl (50% ethanol, pH 7.2) buffer solution, a pair of quasi-reversible redox peaks at potentials of Ep1 = −0.688 V and Ep2 = −0.628 V and one irreversible anodic peak, which was a typical anodic peak of emodin, at Ep3 = −0.235 V appeared at a scan rate of 100 mV/s. The irreversible anodic peak currents are linearly related to the emodin concentrations in a range from 8.9 × 10−8 M to 7.8 × 10−6 M with a pre-concentration time of 80 s under −0.620 V. Using the established method without pretreatment and pre-separation, emodin in herbal drug was determined with satisfactory results. Moreover, the electrode process dynamics parameters were also investigated by electrochemical techniques.  相似文献   

18.
The electrocatalytic oxidation of guanine and DNA is demonstrated on a sol-gel coated carbon screen printed electrode modified with {MeReO(edt)}2 using cyclic and differential pulse voltammetric techniques. An oxidation peak at 370 mV was found, but no corresponding reduction peaks could be detected in the negative scan, which indicates that the oxidation of guanine is completely irreversible process. The oxidation peak potentials are shifted to more negative values with increasing pH. The utility of applying the sensor for determination of guanine and ss-DNA were investigated. The linear ranges were 0.19-10.8 and 0.45-7.8 μg ml−1 for guanine and DNA, respectively. Detection limits of 0.1 and 0.32 μg ml−1 were obtained for guanine and ss-DNA, respectively.  相似文献   

19.
The present work describes a procedure for the sequential determination of Pd(II), Pt(II), Rh(III), by square wave adsorption stripping voltammetry (SWAdSV) and Pb(II) by square wave anodic stripping voltammetry (SWASV) in environmental matrices (sediments, soils and superficial water) in the presence of possible metal interferences, including high concentration ratios.The supporting electrolytes were 0.1 mol/L HCl, 0.1 mol/L HCl + 1.8 × 10−4 mol/L dimethylglyoxime (DMG) and 0.6 mmol/L formaldehyde + 1.2 mmol/L hydrazine (formazone complex) in 0.1 mol/L HCl.The voltammetric measurements were carried out using, as working electrode, a stationary hanging mercury drop electrode (HMDE), a platinum wire as auxiliary and an Ag|AgCl|KClsat as reference electrode.The analytical procedure was verified by the analysis of standard reference materials (CCRMP-CANMET-TDB-1 and CCRMP-CANMET-UMT-1 (rock soils), Sea Water BCR-CRM 403 and Fresh Water NIST-SRM 1643d). In the case of water standard reference materials, the solutions were spiked with known element concentrations, successively verifying the percentage recovery.In the presence of reciprocal interference, the standard addition method considerably improved the resolution of the voltammetric technique, even in the case of very high element concentration ratios.Once set up on the standard reference materials, the analytical procedure was transferred and applied to sediments, soils and superficial waters sampled in proximity of superhighway and in the Po River mouth area.A critical comparison with spectroscopic measurements is also discussed.  相似文献   

20.
A carbon paste electrode (CPE) modified with thionine immobilized on multi-walled carbon nanotube (MWCNT), was prepared for simultaneous determination of ascorbic acid (AA) and acetaminophen (AC) in the presence of isoniazid (INZ). The electrochemical response characteristics of the modified electrode toward AA, AC and INZ were investigated by cyclic and differential pulse voltammetry (CV and DPV). The results showed an efficient catalytic role for the electro-oxidation of AA and AC, leading to a remarkable peak resolution (∼303 mV) for two compounds. On the other hand, the presence of INZ, which is considered as important drug interference for AC, does not affect the voltammetric responses of these pharmaceuticals. The mechanism of the modified electrode was analyzed by monitoring the CVs at various potential sweep rates and pHs of the buffer solutions. Under the optimum conditions, the calibration curves for AA, AC and INZ were obtained in the range of 1 × 10−6 to 1 × 10−4 M, 1 × 10−7 to 1 × 10−4 M and 1 × 10−6 to 1 × 10−4 M, respectively. The prepared modified electrode shows several advantages such as simple preparation method, high sensitivity, long-time stability, ease of preparation and regeneration of the electrode surface by simple polishing and excellent reproducibility. The proposed method was applied to determination of AA, AC and INZ in commercial drugs and in plasma samples and the obtained results were satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号