首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cyclic voltammetry using a gold disk working electrode has been employed for quantifying sodium borohydride in alkaline aqueous media. A 6 mm diameter disk working electrode is shown to offer higher sensitivity compared to a 1 mm diameter electrode, demonstrated by the slope of the calibration curve being 38 times greater when the 6 mm electrode is used. The dynamic range is also greater with the 6 mm electrode, evidenced by the square of the correlation coefficient for regression over the same concentration range. The influence of the matrix on the calibration curves was evaluated; 2 M NaOH, 2 M NaOH + 10% NaBO2, 2 M NaOH + 20% NaBO2, 2 M NaOH + 25% NaBO2, and 25% NaBO2 in solution at pH 12 were the matrices investigated. The matrix was shown to affect the calibration curves; generally, increasing content of NaBO2 caused the slope to decrease. Cyclic voltammetry was then used to assess the stability of sodium borohydride in aqueous solutions of different compositions.  相似文献   

2.
The direct oxidation of sodium borohydride in concentrated sodium hydroxide medium has been studied by cyclic and linear voltammetry, chronoamperometry and chronopotentiometry for silver and gold electrocatalysts, either bulk and polycrystalline or nanodispersed over high area carbon blacks. Gold and silver yield rather complete utilisation of the reducer: around 7.5 electrons are delivered on these materials, versus 4 at the most for platinum as a result of the BH4 non-negligible hydrolysis taking place on this latter material. The kinetic parameters for the direct borohydride oxidation are better for gold than for silver. A strong influence of the ratio of sodium hydroxide versus sodium borohydride is found: whereas the theoretical stoichiometry does forecast that eight hydroxide ions are needed for each borohydride ion, our experimental results prove that a larger excess hydroxide ion is necessary in quasi-steady state conditions. When the above-mentioned ratio is unity (1 M NaOH and 1 M NaBH4), the tetrahydroborate ions direct oxidation is limited by the hydroxide concentration, and their hydrolysis is no longer negligible. The hydrolysis products are probably BH3OH ions, for which gold displays a rather good oxidation activity. Additionally, silver, which is a weak BH4 oxidation electrocatalyst, exhibits the best activity of all the studied materials towards the BH3OH direct oxidation.Finally, carbon-supported gold nanoparticles seem promising as anode material to be used in direct borohydride fuel cells.  相似文献   

3.
A cuprous oxide (Cu2O) nanoparticles modified Pt rotating ring-disk electrode (RRDE) was successfully fabricated, and the electrocatalytic determination of p-nitrophenol (PNP) using this electrode was developed. Cu2O nanoparticles were obtained by reducing the copper-citrate complex with hydrazine hydrate (N2H4·H2O) in a template-free process. The hydrodynamic differential pulse voltammetry (HDPV) technique was applied for in situ monitor the photoelectrochemical behavior of PNP under visible light using nano-Cu2O modified Pt RRDE as working electrode. PNP undergoes photoelectrocatalytic degradation on nano-Cu2O modified disk to give electroactive p-hydroxylamino phenol species which is compulsive transported and can only be detected at ring electrode at around 0.05 V with oxidation signal. The effects of illumination time, applied bias potential, rotation rates and pH of the reaction medium have been discussed. Under optimized conditions for electrocatalytic determination, the anodic current is linear with PNP concentration in the range of 1.0 × 10−5 to 1.0 × 10−3 M, with a detection limit of 1.0 × 10−7 M and good precision (RSD = 2.8%, n = 10). The detection limit could be improved to 1.0 × 10−8 M by given illumination time. The proposed nano-Cu2O modified RRDE can be potentially applied for electrochemical detection of p-nitrophenol. And it also indicated that modified RRDE technique is a promising way for photoelecrocatalytic degradation and mechanism analysis of organic pollutants.  相似文献   

4.
This study uses rotating ring-disk electrode (RRDE) and linear sweep voltammetry (LSV) to characterize oxygen reduction kinetics in alkaline solution on platinum electrodes with various thickness of hydrous oxide (oxyhydroxy) film. Oxyhydroxy films are created on Pt electrodes by pretreatment in 1.0 mol dm−3 KOH at a constant voltage. The pretreatment voltage ranges from −1.2 to 1.0 V and is increased stepwise before each new experimental run to produce seven discreet films. LSV plots show oxyhydroxy film thickness strongly inhibits oxygen reduction and is inversely proportional to RRDE oxygen reduction current ID for LSV voltages ED from −0.1 to −0.46 V, but this trend reverses at ED more negative than −0.46 V so that the worst-performing electrode becomes the best. However, this improvement disappears at around −0.8 V, suggesting this change involves a negatively charged ion, possibly embedded into the metal in the top few atomic layers either interstitially or substitutionally. The 1.0 V-pretreated electrode in the ED range from −0.46 to −0.9 V of highest oxygen reduction current also exhibits the lowest hydrogen peroxide production, with zero H2O2 produced at −0.6 V, indicating the brief presence of the oxyhydroxy film on the Pt surface has strong lingering effects. The post-oxyhydroxy Pt surface is very different than the native Pt for oxygen reduction pathway and efficiency. Reaction order with respect to oxygen is close to 1. The rate constants of the direct O2 to H2O electroreduction reaction are increased with decreasing the potential from −0.2 to −0.6 V, but the O2 to H2O2 electroreduction is contrary to this expectation. The rate constants of H2O2 decomposition on the oxyhydroxy film-covered Pt electrode are near constant around 1 × 10−4 cm s−1 at ED > −0.5 V.  相似文献   

5.
Min Ku Jeon 《Electrochimica acta》2009,54(10):2837-2842
The effect of reduction conditions on a Pt28Ni36Cr36/C catalyst was investigated by using two different reduction methods: hydrogen reduction and NaBH4 reduction. In hydrogen reduced catalysts, dissolution of metallic Ni and Cr was observed during cyclic voltammetry (CV) tests, and a larger amount of Ni and Cr was dissolved when reduced at higher temperatures. For methanol electro-oxidation, the highest specific current density of 1.70 A m−2 at 600 s of the chronoamperometry tests was observed in the catalyst reduced at 300 °C, which was ∼24 times that of a Pt/C catalyst (0.0685 A m−2). In NaBH4 reduced catalysts, formation of an amorphous phase and a more Pt-rich surface was observed in X-ray diffraction and CV results, respectively, with increasing amounts of NaBH4. When reduced by 50 times of the stoichiometric amount of NaBH4, the PtNiCr/C catalyst (PtNiCr-50t) showed a current density of 34.1 A gnoble metal−1, which was 81% higher than the 18.8 A gnoble metal−1 value of a PtRu/C catalyst at 600 s of the chronoamperometry tests. After 13 h of chronoamperometry testing, the activity of the PtNiCr-50t (15.0 A gnoble metal−1) was 110% higher than the PtRu/C catalyst (7.15 A gnoble metal−1). The PtNiCr/C catalyst shows promise as a Ru-free methanol oxidation catalyst.  相似文献   

6.
The electroreduction of Fe(II) and Nd(III) in MClx-acetamide-urea-NaBr-KBr were studied by cyclic voltammetry and chronoamperometry. The reduction of Fe(II) to Fe is an irreversible process, the value of αnα of the electrode reaction was calculated to be 0.31 and the diffusion coefficient of Fe(II) was calculated to be 9.53 × 10−7 cm2 s−1 at 343 K. Nd(III) cannot be reduced alone in urea melt, but Nd-Fe can be codeposited by induced codeposition. The composition of Nd-Fe film varies with the Nd(III)/Fe(II) molar ratio, at the potential of −1.25 V the maximum content of Nd in Nd-Fe film is 60.4 wt%. The morphology of Nd-Fe film was investigated by SEM and AFM. Nd-Fe film comprises of nanoparticles with the size about 100-200 nm. X-ray diffraction (XRD) shows it is amorphous. After heat-treatment at 1173 K the crystal Nd2Fe17 phase can be formed. The magnetic properties of the Nd-Fe films were determined using hysteresis loops, at 5 K the coercive field Hc of Nd (62.6 wt%)-Fe amorphous film is 1225 Oe, the remanent magnetization MR and the saturation magnetization MS are 5.15 and 15.80 emu g−1, respectively.  相似文献   

7.
Fang Ye  Lishi Wang 《Electrochimica acta》2008,53(12):4156-4160
5-[o-(4-Bromine amyloxy)phenyl]-10,15,20-triphenylporphrin (o-BrPETPP) was electropolymerized on a glassy carbon electrode (GCE), and the electrocatalytic properties of the prepared film electrode response to dopamine (DA) oxidation were investigated. A stable o-BrPETPP film was formed on the GCE under ultrasonic irradiation through a potentiodynamic process in 0.1 M H2SO4 between −1.1 V and 2.2 V versus a saturated calomel electrode (SCE) at a scan rate of 0.1 V s−1. The film electrode showed high selectivity for DA in the presence of ascorbic acid (AA) and uric acid (UA), and a 6-fold greater sensitivity to DA than that of the bare GCE. In the 0.05 mol L−1 phosphate buffer (pH 6.0), there was a linear relationship between the oxidation current and the concentration of DA solution in the range of 5 × 10−7 mol L−1 to 3 × 10−5 mol L−1. The electrode had a detection limit of 6.0 × 10−8 mol L−1(S/N = 3) when the differential pulse voltammetric (DPV) method was used. In addition, the charge transfer rate constant k = 0.0703 cm s−1, the transfer coefficient α = 0.709, the electron number involved in the rate determining step nα = 0.952, and the diffusion coefficient Do = 3.54  10−5 cm2 s−1 were determined. The o-BrPETPP film electrode provides high stability, sensitivity, and selectivity for DA oxidation.  相似文献   

8.
A novel electrode material was obtained at an aluminum electrode (Al) by a simple electroless method including two consecutive procedures: (i) the electroless deposition of metallic palladium on the Al electrode surface from PdCl2 + 25% ammonia solution and (ii) the chemical transformation of deposited palladium to the palladium hexacyanoferrate (PdHCF) films in a solution containing 0.5 M K3[Fe(CN)6]. The modified Al electrode demonstrated a well-behaved redox couple due to the redox reaction of the PdHCF film. The PdHCF film showed an excellent electrocatalytic activity toward the oxidation of dopamine (DA). The effect of solution pH on the voltammetric response of DA has been investigated. A linear calibration graph was obtained over the DA concentration range 2-51 mM. The rate constant k and transfer coefficient α for the catalytic reaction and the diffusion coefficient of DA in the solution D, were found to be 4.67 × 102 M−1 s−1, 0.63 and 2.5 × 10−6 cm2 s−1, respectively. The interference of ascorbic acid was investigated and greatly reduced using a thin film of Nafion on the modified electrode. The modified electrode indicated reproducible behavior and a high level stability during electrochemical experiments, making it particularly suitable for the analytical purposes.  相似文献   

9.
A glassy carbon (GC) electrode surface was modified with a cadmium pentacyanonitrosylferrate (CdPCNF) film as a novel electrode material. The modification procedure of the GC surface includes two consecutive procedures: (i) the electrodeposition of metallic cadmium on the GC electrode surface from a CdCl2 solution and (ii) the chemical transformation of the deposited cadmium to the CdPCNF films in 0.05 M Na2[Fe(CN)5NO] + 0.5 M KNO3 solution. The modified GC electrode showed a well-defined redox couple due to [CdIIFeIII/II(CN)5NO]0/−1 system. The effects of supporting electrolytes and solution pH were studied on the electrochemical behavior of the modified electrode. The diffusion coefficients of alkali-metal cations in the film (D), the transfer coefficient (α) and the charge transfer rate constant at the modifying film | electrode interface (ks), were calculated in the presence of various alkali-metal cations. The stability of the modified electrode was investigated under various experimental conditions.  相似文献   

10.
The surface of an aluminum (Al) electrode was modified with a thin film of nickel hexacyanoruthenate (NiHCR) as a novel electrode material. The modification procedure of Al surface, includes two consecutive procedures: (i) the electroless deposition of metallic nickel on the Al electrode surface from NiCl2 solution, and (ii) the chemical transformation of deposited nickel to nickel hexacyanoruthenate films in solution of 20 mM K3[Ru(CN)6] + 0.5 M KNO3. Cyclic voltammogram of the modified Al electrode showed a well-defined redox reaction due to [NiIIRuIII/II(CN)6]1−/2− system. The effects of different supporting electrolytes and solution pH were studied on the electrochemical characteristics of the modified electrode. The diffusion coefficients of K+ and Na+ cations in the film (D), the transfer coefficient (α), and the charge transfer rate constant at the modifying film/electrode interface (ks), were calculated in the presence of both K+ and Na+ cations. The stability of the modified electrode was investigated under various experimental conditions.  相似文献   

11.
The poly(3,4-ethylenedioxy thiophene) (PEDOT)/ferricyanide (FCN) film was synthesized by a potentiostatic and also using potentiodynamic methods namely cyclic voltammetric and chronoamperometric techniques. The EQCM technique was used to study the mechanism of the incorporation of ferricyanide ions on the PEDOT film. The UV-vis absorption results too confirmed the presence of ferricyanide with the PEDOT film. The electrocatalytic oxidation of ascorbic acid was carried out on a glassy carbon electrode modified with the PEDOT/FCN film through cyclic voltammetry, chronoamperometry and rotating disk electrode (RDE) voltammetry as diagnostic techniques. It was found that the catalytic current depended on the concentration of ascorbic acid. The number of electron transfer involved in the rate-determining step was found to be 1 and transfer coefficient (α) equal to 0.476. The diffusion coefficient of ascorbic acid was also estimated through the chrono amperometric and rotating disk electrode methods. The D values of ascorbic acid obtained by through the cyclic and chronoamperometric methods were found to be 4.4103 × 10−6 and 4.9595 × 10−6 cm2 s−1, respectively. This modified electrode was also used for the simultaneous determination of ascorbic acid and dopamine.  相似文献   

12.
Functionalized polypyrrole film were prepared by incorporation of (Fe(CN)6)4− as doping anion, during the electropolymerization of pyrrole onto a carbon paste electrode (CPE) in aqueous solution by using potentiostatic method. The electrochemical behavior of the (Fe(CN)6)3−/(Fe(CN)6)4− redox couple in polypyrrole was studied by cyclic voltammetry and double step potential chronoamperometry methods. In this study, an obvious surface redox reaction was observed and dependence of this reaction on the solution pH was illustrated. The electrocatalytic ability of polypyrrole/ferrocyanide films modified carbon paste electrode (Ppy/FCNMCPEs) was demonstrated by oxidation of ascorbic acid. It has been found that under optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such electrode occurs at a potential about 540 mV less positive than unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and catalytic reaction rate constant, kh′, were also determined by using various electrochemical approaches.The catalytic oxidation peak current showed a linear dependent on the ascorbic acid concentration and a linear calibration curve was obtained in the range of 4.5×10−4 to 9.62×10−3 M of ascorbic acid with a correlation coefficient of 0.9999. The detection limit (2σ) was determined as 5.82×10−5 M.  相似文献   

13.
Multinegatively charged metal complex, hexacyanoferrate ([Fe(CN)6]4−), was electrostatically trapped in the cationic polymer film of N,N-dimethylaniline (PDMA) which was electrochemically deposited on the boron-doped diamond (BDD) electrode by controlled-potential electro-oxidation of the monomer. This ferrocyanide-trapped PDMA film was used to catalyze the oxidation of ascorbic acid (AA). Increase in the oxidation current response with a negative shift of the anodic peak potential was observed at the cationic PDMA film-coated BDD (PDMA|BDD) electrode, compared with that at the bare BDD electrode. A more drastic enhancement in the oxidation peak current as well as more negative shift of oxidation potential was found at the ferrocyanide-trapped PDMA film-coated BDD ([Fe(CN)6]3−/4−|PDMA|BDD) electrode. This [Fe(CN)6]3−/4−|PDMA|BDD electrode can be used as an amperometric sensor of AA. Ferrocyanide, electrostatically trapped in the polymer film shows more electrocatalytic activity than that coordinatively attached to the polymer film or dissolved in the solution phase. The electrocatalytic current depends on the surface coverage of ferricyanide, ΓFe, within the polymer film. Diffusion coefficient (D) of AA in the solution was estimated by rotating disk electrode voltammetry: D = (5.8 ± 0.3) × 10−6 cm2 s−1. The second-order rate constant for the catalytic oxidation of AA by ferricyanide was also estimated to be 9.0 × 104 M−1 s−1. In the hydrodynamic amperometry using the [Fe(CN)6]3−/4−|PDMA|BDD electrode, a successive addition of 1 μM AA caused the successive increase in current response with equal amplitude and the sensitivity was calculated as 0.233 μA cm−2 μM−1.  相似文献   

14.
The impedance of the anodically formed hydrous Ru oxide in the system Ru|oxide film|1 M HClO4 solution has been studied in the range of potentials where the electrode process occurs by a double electron and proton exchange between the oxide film and the solution. The results allowed us to clearly distinguish between the surface process at higher frequency and the bulk process at lower frequency. The high-frequency charging is found to be coupled to Faradaic charging at the film/solution interface. Evaluation of the impedance data at lower frequency, using diffusion equations for the finite boundary conditions, yields an effective proton diffusion coefficient to be 10−10 to 10−11 cm2 s−1.Oxygen reduction on the spontaneously oxidized ruthenium electrode was discussed on the basis of a rotating ring-disk voltammetry.  相似文献   

15.
Hydrolytic lignin (HL) was adsorbed from an aqueous/organic solution on bare and iodine-modified gold electrode. Subsequent electrooxidation of the lignin adsorbate generated redox-active quinone-based groups in the biopolymer structure, exhibiting high reversibility during potential cycling and fast electron transfer kinetics. The presence of the chemisorbed iodine layer on the supporting gold electrode had a pronounced effect on the electrochemical properties of the final modified electrode in terms of double-layer capacitance (Cdl) and the observed surface coverage (Γobs). The high electrochemical activity in connection with low Cdl made it possible to apply the Au|I(ads)|HL electrode as a fast-responding and sensitive electrochemical sensor for NADH. When tested in the amperometric mode at a constant potential of +0.4 V vs. Ag/AgCl, the modified electrode showed a linear current-concentration response over the range of 5-120 μM with a sensitivity of 2.39 nA μM−1 cm−2 and a detection limit of 1.0 μM (S/N = 3). Kinetic studies using the rotating disk electrode revealed that the mediated oxidation of NADH on the Au|I(ads)|HL electrode was limited by the second order reaction of the analyte molecules with o-quinone moieties with a rate constant of ca. 4.7 × 102 M−1 s−1 (CNADH → 0). The modified electrode showed high resistivity against fouling and retained ca. 65% activity after storage in phosphate buffer (pH 7.4) at room temperature for 1 week.  相似文献   

16.
Gold colloid solutions were prepared by reduction of Au(III) with Sn(II) in both acidic (HCl) and alkaline (carbonate) media, and characterized by electron microscopy, X-ray diffraction and light absorption spectra. Depending on the colloid preparation conditions, metal particles of 5-30 nm in size were obtained. Light absorption spectra of the Au colloid solutions contain an absorption band at 500-600 nm, typical of small gold particles. According to XRD data, colloid particles contain the metallic Au and SnO2 phases. The colloid formation rate and colloid solution stability depend on solution pH; the alkaline colloid solutions are formed more slowly and are more stable. The gold nanoparticles adsorbed on the dielectrics surface were found to initiate the electroless copper deposition process. The glassy carbon (GC) electrode modified by Au nanoparticles (200-900 ng cm−2 Au) was found to be an electrocatalyst for dimethylamine borane, borohydride, hydrazine, and formaldehyde oxidation in alkaline solutions. The activity of the reducers can be arranged as follows: DMAB > NaBH4 > N2H4 > CH2O.  相似文献   

17.
A gold electrode surface was modified using a dinuclear copper complex [CuII2 (Ldtb)(μ-OCH3)](BPh4) and then coated with a chitosan film. This biomimetic polymer film-coated electrode was employed to eliminate the interference from ascorbic acid and uric acid in the sensitive and selective determination of dopamine. The optimized conditions obtained for the biomimetic electrode were 0.1 M phosphate buffer solution (pH 8.0), complex concentration of 2.0 × 10−4 M, 0.1% of chitosan and 0.25% of glyoxal. Under the optimum conditions, the calibration curve was linear in the concentration range of 4.99 × 10−7 to 1.92 × 10−5 M, and detection and quantification limits were 3.57 × 10−7 M and 1.07 × 10−6 M, respectively. The recovery study gave values of 95.2-102.6%. The lifetime of this biomimetic sensor showed apparent loss of activity after 70 determinations. The results obtained with the modified electrode for dopamine quantification in the injection solution matrix were in good agreement with those of the pharmacopoeia method.  相似文献   

18.
The sol-gel technique was used to fabricate nickel powder carbon composite electrode (CCE). The nickel powder successfully used to deposit NiOx thin film on conductive carbon ceramic electrode for large surface area catalytic application. Repetitive cycling in potential range −0.2 to 1.0 V was used to form of a thin nickel oxide film on the surface carbon composite electrode. The thin film exhibits an excellent electro-catalytic activity for oxidation of SO32−, S2O42−, S2O32−, S4O62− and S2− in alkaline pH range 10-14. Optimum pH values for detection of all sulfur derivatives is 13 and catalytic rate constants are in range 2.4 × 103-8.9 × 103 M−1 s−1. The hydrodynamic amperometry at rotating modified CCE at constant potential versus reference electrode was used for detection of sulfur derivatives. Under optimized conditions the calibration plots are linear in the concentration range 10 μM-15 mM and detection limit 1.2-34 μM and 0.53-7.58 nA/μM (sensitivity) for electrode surface area 0.0314 cm2. The nickel powder doped modified carbon ceramic electrode shows good reproducibility, a short response time (2.0 s), remarkable long term stability, less expense, simplicity of preparation, good chemical and mechanical stability, and especially good surface renewability by simple mechanical polishing and repetitive potential cycling. This sensor can be used into the design of a simple and cheap chromatographic amperometry detector for analysis of sulfur derivatives.  相似文献   

19.
Gold nanoparticles with narrow and controlled size distributions have been synthesized chemically and deposited onto a carbon support. Using the resulting gold on carbon (Au/C) catalysts, Au particle size effects on the kinetics of the oxygen reduction reaction (ORR) were analyzed in acidic media (0.5 M H2SO4). From rotating ring-disk electrode (RRDE) voltammetric studies, it was found that, for bulk gold, the number of electrons, n, involved in the ORR was nearly constant at potentials above −0.2 V. On the contrary, for the catalysts with diameters less than 10-15 nm, the value of n increased as the potential became more negative, and the highest value of n was obtained when the size of Au particles was less than 3 nm. Those results showed that further reduction of H2O2 or direct 4-electron reduction of O2 proceeded at relatively low overpotential on extremely small gold clusters.  相似文献   

20.
The electrocatalytic oxidation of hydrazine has been studied on glassy carbon modified by electrodeposition of quinizarine, using cyclic voltammetry and chronoamperometry techniques. It has been shown that the oxidation of hydrazine to nitrogen occurs at a potential where oxidation is not observed at the bare glassy carbon electrode. The apparent charge transfer rate constant and transfer coefficient for electron transfer between the electrode surface and immobilized quinizarine were calculated as 4.44 s−1 and 0.66, respectively. The heterogenous rate constant for oxidation of hydrazine at the quinizarine modified electrode surface was also determined and found to be about 4.83 × 103 M−1 s−1. The diffusion coefficient of hydrazine was also estimated as 1.1 × 10−6 cm2 s−1 for the experimental conditions, using chronoamperometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号