首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In ductile metals one of basic mechanisms for fatigue crack growth is that based on crack-tip blunting under the maximum load and re-sharpening of the crack-tip under minimum load. In this paper, simulations of fatigue crack growth by crack-tip blunting using ANSYS finite element code are presented. This investigation focuses solely on simulation of fatigue crack growth due to crack-tip plasticity only. As such, any material damage and its fracture is not considered. Due to high plastic deformation the present simulations utilize a remeshing technique which allows applying a number of load cycles without terminating the simulation due to the error caused by excessive mesh distortion. The simulations were conducted using a center cracked specimen under various loading conditions including different load ranges and load ratios R = −1, 0 and 0.333. It is shown that fatigue crack growth (FCG) slows down with number of cycles towards a steady state value. The simulated FCG data for constant amplitude loading follow the Paris power law relationship and also indicate a typical R-ratio dependence. It can be noted that for all load cases with load ratios R > 0 no crack closure in the vicinity of the crack-tip wake was observed.  相似文献   

2.
In this paper the fatigue performance of tensile steel/CFRP (Carbon Fibre Reinforced Polymer) double shear lap joints is discussed. Joints were realized with two steel plates and two CFRP strips bonded using epoxy adhesive. Fatigue tests were performed on 16 specimens under constant stress range loading cycles. Two stress ratios (R = 0.1 and R = 0.4) were considered to investigate their influence on the fatigue lifetime. Debonding was observed to occur at stress concentration zones and propagate along the CFRP/adhesive interfaces. The stiffness degradation of the steel joint due to progressive debonding of the adhesive represents an index for the subsequent and progressive global failure. S–N curves are defined and compared to the fatigue resistance of welded detail categories of the Eurocode 3. The tests showed that the stress ratio, R, has a marginal influence on the fatigue lifetime of the steel/CFRP double shear lap joints. Finally, a fatigue limit corresponding to a stress range in the steel plate equal to 75 MPa was conservatively estimated during the tests. The fatigue limit seems to be insensitive to the stress ratio R.  相似文献   

3.
In this study, the fatigue behavior of aluminum alloy 2024T3 v-notched specimens repaired with composite patch under block loading was analyzed experimentally. Two loading blocks were applied: increasing and decreasing at two stress ratio: R = 0 and R = 0.1. Failed samples were examined under scanning electron microscope at different magnifications to analyze their fractured surfaces. The obtained results show that under increasing blocks, the crack growth is accelerated for both repaired and unrepaired specimens. This is attributed to the increase of the loading amplitude in the second block. A retardation effect was observed for decreasing blocks loading in unrepaired specimens. However, this retardation effect is attenuated by the presence of the patch which lead to lower fatigue life for repaired specimens.  相似文献   

4.
The present work covers the mechanical behaviour of Timetal LCB under fatigue loading and utilizes transmission electron microscopy (TEM) to study the associated microstructural evolution. Fatigue specimens were taken out of LCB wire made for automotive suspension spring manufacturing in a solution treated as well as an additionally aged state. Uniaxial fatigue tests were carried out in total strain control with R = 0.1. Solution treated specimens tested at 3% and 4% maximum total strain showed a saturating force response, which differed from all other total strain controlled tests, and a distinct fracture behaviour. In addition, an increase of the dynamic Young's modulus is observed under these test conditions and in this material state. These findings are interpreted as a deformation induced precipitation of nanosize α- or ω-phase.In the aged state, the α-phase carries the major part of deformation work, noticeable by distinct α-substructures in fatigued specimen states.  相似文献   

5.
Fatigue-crack-growth (FCG) rate tests were conducted on compact specimens made of an Inconel-718 alloy to study the behavior over a wide range in load ratios (0.1 ? R ? 0.95) and a constant Kmax test condition. Previous research had indicated that high R (>0.7) and constant Kmax test conditions near threshold conditions were suspected to be crack-closure-free and that any differences were attributed to Kmax effects. During a test at a load ratio of 0.7, strain gages were placed near and ahead of the crack tip to measure crack-opening loads from local load-strain records during crack growth. In addition, a back-face strain (BFS) gage was also used to monitor crack lengths and to measure crack-opening loads from remote load-strain records during the same test. The BFS gage indicated that the crack was fully open (no crack closure), but the local load-strain records indicated significant amounts of crack closure. The crack-opening loads were increasing as the crack approached threshold conditions at R = 0.7. Based on these measurements, crack-closure-free FCG data (ΔKeff against rate) were calculated. The ΔKeff-rate data fell at lower ΔK values and higher rates than the constant Kmax test results. In addition, constant R tests at extremely high R (0.9 and 0.95) were also performed and compared with the constant Kmax test results. The constant R test results at 0.95 agreed well with the ΔKeff-rate data, while the R = 0.9 data agreed well with constant Kmax test data in the low-rate regime. These results imply that the R = 0.7 test had a significant amount of crack closure as the threshold was approached, while the R = 0.9 and Kmax test results may have had a small amount of crack closure, and may not be closure free, as originally suspected. Under the high load-ratio conditions (R ? 0.7), it is suspected that the crack surfaces are developing debris-induced crack closure from contacting surfaces, which corresponded to darkening of the fatigue surfaces in the near-threshold regime. Tests at low R also showed darkening of the fatigue surfaces only in the near-threshold regime. These results suggest that the ΔKeff against rate relation may be nearly a unique function over a wide range of R in the threshold regime.  相似文献   

6.
Semi-elliptical fatigue crack growth in 304 L stainless steel, under biaxial loading, was investigated. Compared to those of through-cracks under uniaxial loading, the growth rate of surface cracks is increased by a non-singular compressive stress and reduced by a tensile stress, when R = 0. Plasticity-induced crack closure under biaxial loading was investigated through 3D finite element simulations with node release. Roughness and phase-transformation-induced closure effects were also discussed. The interactions in two-directional crack networks under biaxial tension were investigated numerically. It appears that the presence of orthogonal cracks should not be ignored. The beneficial influence of interaction-induced mode-mixities was highlighted.  相似文献   

7.
Fatigue tests were performed on welded joints made of high-strength, low-alloy steel (S690). Different welding processes were tested, resulting in welds with different defects essentially consisting in lack of penetration. Fatigue tests were run with both constant and variable amplitude loading. The experimental results were compared to predictions obtained by applying local approaches (local stress and local strain) and the concepts of fracture mechanics. The local stress approach allowed the fatigue strength of joints in constant amplitude loading (for fatigue above 2 × 106) to be predicted, but the assumption of a constant value of the slope k = 3 for all S–N curves led to non-conservative predictions of shorter lives. The local strain approach allowed the fatigue strength of the joints under constant amplitude to be predicted. Although, these predictions matched the experimental data well for both small and large defects in the entire cycle number range, they failed to predict the behaviour of joints under variable amplitude loading. Conversely, the fracture mechanics approach proved to be more efficient in predicting the fatigue behaviour of welded joint under variable amplitude loading.  相似文献   

8.
A fatigue prediction approach is proposed using fracture mechanics for laser beam welded Al-alloy joints under stationary variable amplitude loading. The proposed approach was based on the constant crack open stress intensity factor in each loading block for stationary variable amplitude loading. The influence of welding residual stress on fatigue life under stationary variable amplitude was taken into account by the change of crack open stress intensity factor in each loading block. The residual stress relaxation coefficient β = 0.5 was proposed to consider the residual stress relaxation for the laser beam welded Al-alloy joints during the fatigue crack growth process. Fatigue life prediction results showed that a very good agreement between experimental and estimated results was obtained.  相似文献   

9.
Infrared thermography allows an alternative energy‐based approach for studying the fatigue behaviour of materials to better understand damage phenomena. In particular, the methodology of infrared thermography can explain the complex dissipative mechanisms promoted by the input parameters, such as the loading ratio, can rapidly provide information about the fatigue strength, and has low cost. In this work, analysis of the thermographic sequences of ASTM A 182 grade F6NM steel obtained during fatigue testing provided four thermal indexes that were used to investigate the thermoelastic and plastic behaviour of material. Fatigue tests at two opportunely chosen loading ratios (R = ?0.1, R = 0.5) were performed to investigate the relation between the material behaviour and each index at a specific loading ratio. Finally, estimation of the fatigue strength by means of suitable analysis procedures allowed for an investigation of the damage behaviour of materials under specific loading conditions.  相似文献   

10.
This paper presents a general theory for the estimations of an entire fatigue curve in ductile materials based on the implicit gradient approach. In order to modify the slope of the Woehler curves, the material was considered non-linear. The average stress of the hysteresis loop was taken into account by means of Walker’s model. Subsequently, the implicit gradient method was adopted for the numerical evaluation of the effective stress and strain at low- and medium-cycle fatigue life and was then related to the fatigue strength of the material. The characteristic length, relating to the fatigue behaviour of the material, was considered constant for the fatigue lifetime. In order to confirm the proposed method, new experimental data were obtained, relating to axisymmetric notched specimens loaded with nominal stress ratio R = −1 and R = 0. In terms of the effective strain amplitude, evaluated by means of the implicit gradient approach, the different Woehler curves of notched specimens were summarised in a unique fatigue curve as a function of Walker’s cycle parameter.  相似文献   

11.
The advantages of friction stir welding (FSW) process compared to conventional fusion welding technologies have been clearly demonstrated in recent years. In the present study, AA6082 FSW joints were produced by employing different welding parameters. The principal aim of this work is to apply thermoelastic stress analysis (TSA) to study crack propagation characteristics of friction stir welded aluminum sheets, during cyclic fatigue tests. The crack propagation experiments were performed by employing single edge notched specimens; fatigue tests were performed under tension with load ratio R = 0.1. All the mechanical tests were conducted up to failure. The TSA measurement system allowed crack evolution to be observed in real-time during fatigue cycles and stress fields to be derived on the specimens from the measured temperature variation. The thermoelastic data were used to analyse principal stresses and principal strains on the specimens surface and the crack growth rate during tests. In addition, it was possible to evaluate all the joints defects effects, as a function of welding parameters, correlating effects on different crack growth rate and instabilities. The achieved results were compared with those obtained by classical CCD camera monitoring of crack front propagation during cyclic loading and all the results were validated by employing finite element analysis performed with ABAQUS software.  相似文献   

12.
Numerous studies have observed that the fatigue strength of improved welds increases with material yield strength. This paper provides a comprehensive evaluation of published data for high frequency mechanical impact treated welds. In total, 228 experimental results for three weld geometries subject to R = 0.1 axial loading have been reviewed. A design recommendation including one fatigue class increase in strength (about 12.5%) for every 200 MPa increase in static yield strength is proposed and are shown to be conservative with respect to all available data. Special cautions are given for high R-ratio or variable amplitude fatigue and potential alternate failure locations.  相似文献   

13.
A series of fatigue experiments was performed in order to investigate the effect of the R-ratio on the fatigue/fracture behavior of adhesively-bonded pultruded GFRP double cantilever beam joints. Constant amplitude fatigue experiments were carried out under displacement control with a frequency of 5 Hz in ambient laboratory conditions. Three different R-ratios were applied: R = 0.1, R = 0.5 and R = 0.8. The crack length was determined by means of crack gages and a dynamic compliance method. The dominant failure mode was a fiber-tear failure that occurred in the mat layers of the pultruded laminates. The depth of the crack location significantly affected the energy dissipated for the fracture under cyclic loading. Short-fiber and roving bridging increased the fracture resistance during crack propagation. Fatigue crack growth curves were derived for each R-ratio and each observed crack path location. The fatigue threshold and slope of the fatigue crack growth curve significantly increased with increased R-ratio.  相似文献   

14.
The paper deals with multi-axial fatigue strength of notched specimens made of C40 carbon steel (normalised state), subjected to combined tension and torsion loading, both in-phase and out-of-phase (Φ=0 and 90°). V-notched specimens have been tested under two nominal load ratios, R=−1 and 0, while keeping constant and equal to the unity the biaxiality ratio, λa/τa. All specimens have the same geometry, with notch tip radius and depth equal to 0.5 and 4 mm, respectively, while the V-notch angle is equal to 90°. The results determined are discussed together with those deduced under pure tension or torsion loading on plain and notched specimens as well as on small shafts with shoulders. The application of an energy-based approach allows all the fatigue data obtained from the notched specimens to be summarised in a single scatter band, in terms of the total strain energy density evaluated at the notch tip against cycles to failure.  相似文献   

15.
The mean stress influence on fatigue life of carbon and glass fibre reinforced plastics is investigated in detail. A new phenomenological approach is presented to model the mean stress effect in various material systems and fibre dominated stacking sequences. The model is calibrated to fatigue data via a developed fitting-routine that is based on least squares method. The calibration input data is one Woehler curve at R = 0.1 and the ultimate static strengths in tension and compression loading. The characterization effort is reduced by this significantly. Finally the method is verified successfully by fatigue data of several material systems.  相似文献   

16.
The constant/variable amplitude loading fatigue test with interior inclusion-fine granular area-fisheye induced failure under R=0 were carried out on carburized Cr−Ni steel. The results showed that the fatigue life under variable amplitude loading is longer than that under constant amplitude loading in very-high-cycle fatigue regime under same maximum stress level, and the surface morphology of fine granular area under variable amplitude loading is coarser than that under constant amplitude loading under same order of magnitude of fatigue life. Simultaneously, it can be determined that the formation micro-mechanism of fine granular area is caused by the continuous deboning due to stress concentration around interior micro-defects. Furthermore, the life prediction model based on double nonlinear fatigue damage, which considers the coupling effect of local equivalent stress (surface residual stress and local stress concentration effect), loading sequence, failure mechanism and nonlinear characteristics of fatigue damage under constant/variable amplitude loading is established, and predicted life has good accuracy within the factor-of-three lines.  相似文献   

17.
In the present work, fatigue crack growth tests of epoxy resin composite reinforced with silica particle under various R-ratios were carried out to investigate the effect of R-ratio on crack growth behavior and to discuss fatigue crack growth mechanism. Crack growth curves arranged by ΔK showed clear R-ratio dependence even under no crack closure, where the values of ΔKth were 0.82 and 0.33 MPa √m for R = 0.1 and 0.7 respectively. However, crack growth curves arranged by Kmax merged into almost one curve regardless of R-ratio, which indicated that crack growth behavior of the present composite was time-dependent. The value of Kmax,th were in the range from 0.78 to 1.12 MPa √m. In situ crack growth observation revealed the crack growth mechanism: micro-cracking near the interface between silica particle and resin matrix occurs ahead of a main crack and then micro-cracks coalesce with a main crack to grow. The crack path was in the epoxy matrix, which was consistent with the time-dependent crack growth.  相似文献   

18.
Welding of High Strength Low Alloy Steels (HSLA) involves usage of low, even and high strength filler materials (electrodes) than the parent material depending on the application of the welded structures and the availability of the filler material. In the present investigation, the fatigue crack growth behaviour of under matched (UM), equal matched (EM) and over matched (OM) weld metals has been studied. The base material used in this investigation is HSLA-80 steel of weldable grade. Shielded Metal Arc Welding (SMAW) process has been used to fabricate the single “V” butt joints. Centre cracked tension (CCT) specimen has been used to evaluate the fatigue crack growth behaviour of the welded joints. Fatigue crack growth experiments have been conducted using servo hydraulic controlled fatigue testing machine at constant amplitude loading (R=0). Effect of mis-match ratio (MMR) on fatigue crack growth behaviour of HSLA steel welds has been analysed in detail.  相似文献   

19.
Fatigue behavior of double spot friction welded joints in aluminum alloy 7075-T6 plates is investigated by conducting monotonic tensile and fatigue tests. The spot friction welding procedures are carried out by a milling machine with a designed fixture at the best preliminary welding parameter set. The fatigue tests are performed in a constant amplitude load control servo-hydraulic fatigue testing machine with a load ratio of (R = Pmin/Pmax) 0.1 at room temperature. It is observed that the failure mode in cyclic loading (low-cycle and high-cycle) resembles that of the quasi-static loading conditions i.e. pure shearing. Primary fatigue crack is initiated in the vicinity of the original notch tip and then propagated along the circumference of the weld’s nugget.  相似文献   

20.
Al–Li alloys are characterized by a strong anisotropy in mechanical and microstructural properties with respect to the rolling direction. In the present paper, 4 mm sheets of 2198 Al–Li alloy were joined via friction stir welding (FSW) by employing a rotating speed of 1000 mm/min and a welding speed of 80 mm/min in parallel and orthogonal direction with respect to the rolling one. The joints mechanical properties were evaluated by means of tensile tests at room temperature. In addition, fatigue tests were performed by using a resonant electro-mechanical testing machine under constant amplitude control up to 250 Hz sinusoidal loading. The fatigue tests were conducted in axial control mode with R = σmin/σmax = 0.33, for all the welding and rotating speeds used in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号