首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Single crystalline cubic spinel LiMn2O4 nanowires were synthesized by hydrothermal method and the precursor calcinations. The phase structures and morphologies were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). Galvanostatic charging/discharging cycles of as-prepared LiMn2O4 nanowires were performed in an aqueous LiNO3 solution. The initial discharge capacity of LiMn2O4 nanowires was 110 mAh g−1, and the discharge capacity was still above 100 mAh g−1 after 56 cycles at 10C-rate, and then 72 mAh g−1 was registered after 130 cycles. This is the first report of a successful use of single crystalline spinel LiMn2O4 nanowire as cathode material for the aqueous rechargeable lithium battery (ARLB).  相似文献   

2.
Micro-spherical particle of MnCO3 has been successfully synthesized in CTAB-C8H18-C4H9OH-H2O micro-emulsion system. Mn2O3 decomposed from the MnCO3 is mixed with Li2CO3 and sintered at 800 °C for 12 h, and the pure spinel LiMn2O4 in sub-micrometer size is obtained. The LiMn2O4 has initial discharge specific capacity of 124 mAh g−1 at discharge current of 120 mA g−1 between 3 and 4.2 V, and retains 118 mAh g−1 after 110 cycles. High-rate capability test shows that even at a current density of 16 C, capacity about 103 mAh g−1 is delivered, whose power is 57 times of that at 0.2 C. The capacity loss rate at 55 °C is 0.27% per cycle.  相似文献   

3.
Sub-micro spinel-structured LiMn1.5Ni0.5O4 material was prepared by a spray-drying method. The electrochemical properties of LiMn1.5Ni0.5O4 were investigated using Li ion model cells, Li/LiPF6 (EC + DMC)/LiMn1.5Ni0.5O4. It was found that the first reversible capacity was about 132 mAh g−1 in the voltage range of 3.60-4.95 V. Ex situ X-ray diffraction (XRD) analysis had been used to characterize the first charge/discharge process of the LiMn1.5Ni0.5O4 electrode. The result suggested that the material configuration maintained invariability. At room temperature, on cycling in high-voltage range (4.50-4.95 V) and low-voltage range (3.60-4.50 V), the discharge capacity of the material was about 100 and 25 mAh g−1, respectively, and the spinel LiMn1.5Ni0.5O4 exhibited good cycle ability in both voltage ranges. However, at high temperature, the material showed different electrochemical characteristics. Excellent electrochemical performance and low material cost make this spinel compound an attractive cathode for advanced lithium ion batteries.  相似文献   

4.
Highly crystalline spinel LiMn2O4 was successfully synthesized by annealing lithiated MnO2 at a relative low temperature of 600 °C, in which the lithiated MnO2 was prepared by chemical lithiation of the electrolytic manganese dioxide (EMD) and LiI. The LiI/MnO2 ratio and the annealing temperature were optimized to obtain the pure phase LiMn2O4. With the LiI/MnO2 molar ratio of 0.75, and annealing temperature of 600 °C, the resulting compounds showed a high initial discharge capacity of 127 mAh g−1 at a current rate of 40 mAh g−1. Moreover, it exhibited excellent cycling and high rate capability, maintaining 90% of its initial capacity after 100 charge-discharge cycles, at a discharge rate of 5 C, it kept more than 85% of the reversible capacity compared with that of 0.1 C.  相似文献   

5.
Spherical LiMn2O4 particles were successfully synthesized by dynamically sintering spherical precursor powders, which were prepared by a slurry spray-drying method. The effect of the sintering process on the morphology of LiMn2O4 was studied. It was found that a one-step static sintering process combined with a spray-drying method could not be adopted to prepare spherical products. A two-step sintering procedure consisting of completely decomposing sprayed precursors at low temperature and further sintering at elevated temperature facilitated spherical particle formation. The dynamic sintering program enhanced the effect of the two-step sintering process in the formation of spherical LiMn2O4 powders. The LiMn2O4 powders prepared by the dynamic sintering process, after initially decomposing the spherical spray-dried precursor at 180 °C for 5 h and then sintering it at 700 °C for 8 h, were spherical and pure spinel. The as-prepared spherical material had a high tap density (ca. 1.6 g/cm3). Its specific capacity was about 117 mAh/g between 3.0 and 4.2 V at a rate of 0.2 C. The retention of capacity for this product was about 95% over 50 cycles. The rate capability test indicated that the retention of the discharge capacity at 4C rate was still 95.5% of its 0.2 rate capacity. All the results showed that the spherical LiMn2O4 product made by the dynamic sintering process had a good performance for lithium ion batteries. This novel method combining a dynamic sintering system and a spray-drying process is an effective synthesis method for the spherical cathode material in lithium ion batteries.  相似文献   

6.
To achieve a high-energy-density lithium electrode, high-density LiFePO4/C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO4 as a precursor, glucose as a C source, and Li2CO3 as a Li source, in a pipe furnace under an atmosphere of 5% H2-95% N2. The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO4/carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO4/carbon composite powder with a carbon content of 7% reached 1.80 g m−3. The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g−1, respectively, with a volume capacity of 300.6 mAh cm−3, at a 0.1C rate. At a rate of 5C, the LiFePO4/carbon composite shows a high discharge capacity of 98.3 mAh g−1 and a volume capacity of 176.94 mAh cm−3.  相似文献   

7.
Li2FeSiO4/carbon/carbon nano-tubes (Li2FeSiO4/C/CNTs) and Li2FeSiO4/carbon (Li2FeSiO4/C) composites were synthesized by a traditional solid-state reaction method and characterized comparatively by X-ray diffraction, scanning electron microscopy, BET surface area measurement, galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results revealed that the Li2FeSiO4/C/CNT composite exhibited much better rate performance in comparison with the Li2FeSiO4/C composite. At 0.2 C, 5 C and 10 C, the former composite electrode delivered a discharge capacity of 142 mAh g−1, 95 mAh g−1, 80 mAh g−1, respectively, and after 100 cycles at 1 C, the discharge capacity remained 95.1% of its initial value.  相似文献   

8.
Spherical spinel LiMn2O4 particles were successfully synthesized from a mixture of manganese compounds containing commercial manganese carbonate by sintering of the spray-dried precursor. Different preparation routes were investigated to improve the tap density and to enhance the electrochemical performance of LiMn2O4. The structure and morphology of the LiMn2O4 particles were confirmed by X-ray diffraction (XRD) and scanning electron microscopy. The results showed that hollow spherical LiMn2O4 particles could be obtained when only commercial MnCO3 was used as the manganese source. These particles had a low tap density (ca.0.8 g/cm3). Perfect micron-sized spherical LiMn2O4 particles with good electrochemical performance were obtained by spray-drying a slurry composed of MnCO3, Mn(CH3CHOO)2 and LiOH, followed by a dynamic sintering process and a stationary sintering process. The as-prepared spherical LiMn2O4 particles comprised hundreds of nanosize crystal grains and had a high tap density(ca. 1.4 g/cm3). The galvanostatic charge-discharge measurements indicated that the spherical LiMn2O4 particles had an initial capacity of 121 mAh/g between 3.0 and 4.2 V at 0.2 C rate and still delivered a reversible capacity of 112 mAh/g at 2 C rate. The retention of capacity after 50 cycles was still 96% of its initial capacity at 0.2 C. All the results showed that the as-prepared spherical LiMn2O4 particles had an excellent electrochemical performances. The methods we used for preparing spherical LiMn2O4 are energy-saving and suitable for industrial application.  相似文献   

9.
Hierarchical layered hydrous lithium titanate and Li4Ti5O12 microspheres assembled by nanosheets have been successfully synthesized via a hydrothermal process and subsequent thermal treatment. The electrochemical properties of the two samples have been investigated by galvanostatic methods. The former, with the obvious layered structure and a large surface area, delivers a reversible capacity of 180 mA h g−1 after 200 cycles at 200 mA g−1. As for Li4Ti5O12, with the intriguing and unique sawtooth-like morphology, it presents exceptional high rate performance and excellent cycling stability. Up to 132 mA h g−1 is obtained after 200 cycles at 10,000 mA g−1 (57 C), proving itself promising for high-rate applications.  相似文献   

10.
A simple and effective method, ethylene glycol-assisted co-precipitation method, has been employed to synthesize LiNi0.5Mn1.5O4 spinel. As a chelating agent, ethylene glycol can realize the homogenous distributions of metal ions at the atomic scale and prevent the growth of LiNi0.5Mn1.5O4 particles. XRD reveals that the prepared material is a pure-phase cubic spinel structure (Fd3m) without any impurities. SEM images show that it has an agglomerate structure with the primary particle size of less than 100 nm. Electrochemical tests demonstrate that the as-prepared LiNi0.5Mn1.5O4 possesses high capacity and excellent rate capability. At 0.1 C rate, it shows a discharge capacity of 137 mAh g−1 which is about 93.4% of the theoretical capacity (146.7 mAh g−1). At the high rate of 5 C, it can still deliver a discharge capacity of 117 mAh g−1 with excellent capacity retention rate of more than 95% after 50 cycles. These results show that the as-prepared LiNi0.5Mn1.5O4 is a promising cathode material for high power Li-ion batteries.  相似文献   

11.
To fabricate all-solid-state Li batteries using three-dimensionally ordered macroporous Li1.5Al0.5Ti1.5(PO4)3 (3DOM LATP) electrodes, the compatibilities of two anode materials (Li4Mn5O12 and Li4Ti5O12) with a LATP solid electrolyte were tested. Pure Li4Ti5O12 with high crystallinity was not obtained because of the formation of a TiO2 impurity phase. Li4Mn5O12 with high crystallinity was produced without an impurity phase, suggesting that Li4Mn5O12 is a better anode material for the LATP system. A Li4Mn5O12/3DOM LATP composite anode was fabricated by the colloidal crystal templating method and a sol-gel process. Reversible Li insertion into the fabricated Li4Mn5O12/3DOM LATP anode was observed, and its discharge capacity was measured to be 27 mA h g−1. An all-solid-state battery composed of LiMn2O4/3DOM LATP cathode, Li4Mn5O12/3DOM LATP anode, and a polymer electrolyte was fabricated and shown to operate successfully. It had a potential plateau that corresponds to the potential difference expected from the intrinsic redox potentials of LiMn2O4 and Li4Mn5O12. The discharge capacity of the all-solid-state battery was 480 μA h cm−2.  相似文献   

12.
Layered LiNi0.6Co0.2Mn0.2O2 materials were synthesized at different sintering temperatures using spray-drying precursor with molar ratio of Li/Me = 1.04 (Me = transition metals). The influences of sintering temperature on crystal structure, morphology and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 materials have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and charge-discharge test. As a result, material synthesized at 850 °C has excellent electrochemical performance, delivering an initial discharge capacity of 173.1 mAh g− 1 between 2.8 and 4.3 V at a current density of 16 mA g− 1 and exhibiting good cycling performance.  相似文献   

13.
Non-spherical Li(Ni1/3Co1/3Mn1/3)O2 powders have been synthesized using a two-step drying method with 5% excess LiOH at 800 °C for 20 h. The tap-density of the powder obtained is 2.95 g cm−3. This value is remarkably higher than that of the Li(Ni1/3Co1/3Mn1/3)O2 powders obtained by other methods, which range from 1.50 g cm−3 to 2.40 g cm−3. The precursor and Li(Ni1/3Co1/3Mn1/3)O2 are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). XPS studies show that the predominant oxidation states of Ni, Co and Mn in the precursor are 2+, 3+ and 4+, respectively. XRD results show that the Li(Ni1/3Co1/3Mn1/3)O2 material obtained by the two-step drying method has a well-layered structure with a small amount of cation mixing. SEM confirms that the Li(Ni1/3Co1/3Mn1/3)O2 particles obtained by this method are uniform. The initial discharge capacity of 167 mAh g−1 is obtained between 3 V and 4.3 V at a current of 0.2 C rate. The capacity of 159 mAh g−1 is retained at the end of 30 charge-discharge cycle with a capacity retention of 95%.  相似文献   

14.
Electrochemical and thermal properties of Co3(PO4)2- and AlPO4-coated LiNi0.8Co0.2O2 cathode materials were compared. AlPO4-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 170.8 mAh g−1 and had a capacity retention (89.1% of its initial capacity) between 4.35 and 3.0 V after 60 cycles at 150 mA g−1. Co3(PO4)2-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 177.6 mAh g−1 and excellent capacity retention (91.8% of its initial capacity), which was attributed to a lithium-reactive Co3(PO4)2 coating. The Co3(PO4)2 coating material could react with LiOH and Li2CO3 impurities during annealing to form an olivine LixCoPO4 phase on the bulk surface, which minimized any side reactions with electrolytes and the dissolution of Ni4+ ions compared to the AlPO4-coated cathode. Differential scanning calorimetry results showed Co3(PO4)2-coated LiNi0.8Co0.2O2 cathode material had a much improved onset temperature of the oxygen evolution of about 218 °C, and a much lower amount of exothermic-heat release compared to the AlPO4-coated sample.  相似文献   

15.
Spherical lithium manganese oxide spinel was synthesized by an ultrasonic spray pyrolysis method, and has been characterized using X-ray diffraction, scanning electron microscopy, transimission electron microscopy and electrochemical cycling at 3 V regions. The LiMn2O4 powders were composed of about 10 nm-sized primary particles. The delivered discharge capacity of the synthesized nano-material was 125 mAh g−1 between 2.4 and 3.5 V and its retention was about 96% upon 50 cycling. From the high resolution transmission electron microscopic study, it was found that structural transition of the parent material did not occur even after the 50th electrochemical cycling on the 3 V region. It seems that the reversible structural change is possible for nanocrystalline LiMn2O4 as observed by the X-ray diffraction and transition electron microscopic observations.  相似文献   

16.
In recent years, spinel lithium titanate (Li4Ti5O12) as a superior anode material for energy storage battery has attracted a great deal of attention because of the excellent Li-ion insertion and extraction reversibility. However, the high-rate characteristics of this material should be improved if it is used as an active material in large batteries. One effective way to achieve this is to prepare electrode materials coated with carbon. A Li4Ti5O12/polyacene (PAS) composite were first prepared via an in situ carbonization of phenol-formaldehyde (PF) resin route to form carbon-based composite. The SEM showed that the Li4Ti5O12 particles in the composite were more rounded and smaller than the pristine one. The PAS was uniformly dispersed between the Li4Ti5O12 particles, which improved the electrical contact between the corresponding Li4Ti5O12 particles, and hence the electronic conductivity of composite material. The electronic conductivity of Li4Ti5O12/PAS composite is 10−1 S cm−1, which is much higher than 10−9 S cm−1 of the pristine Li4Ti5O12. High specific capacity, especially better high-rate performance was achieved with this Li4Ti5O12/PAS electrode material. The initial specific capacity of the sample is 144 mAh/g at 3 C, and it is still 126.2 mAh/g after 200 cycles. By increasing the current density, the sample still maintains excellent cycle performance.  相似文献   

17.
Indium oxide (In2O3) microspheres with hollow interiors have been prepared by a facile implantation route which enables indium ions released from indium-chloride precursors to implant into nonporous polymeric templates in C2Cl4 solvent. The templates are then removed upon calcination at 500 °C in air atmosphere, forming hollow In2O3 particles. Specific surface area (0.5-260 m2 g−1) and differential pore volume (7 × 10−9 to 3.8 × 10−4 m3 g−1 Å−1) of the hollow particles can be tailored by adjusting the precursor concentration. For the hollow In2O3 particles with high surface area (260 m2 g−1), an enhanced photocatalytic efficiency (up to ∼one-fold increase) against methylene blue (MB) dye is obtained under UV exposure for the aqueous In2O3 colloids with a dilute solids concentration of 0.02 wt.%.  相似文献   

18.
In order to get homogeneous layered oxide Li[Ni1/3Mn1/3Co1/3]O2 as a lithium insertion positive electrode material, we applied the metal acetates decomposition method. The oxide compounds were calcined at various temperatures, which results in greater difference in morphological (shape, particle size and specific surface area) and the electrochemical (first charge profile, reversible capacity and rate capability) differences. The Li[Ni1/3Mn1/3Co1/3]O2 powders were characterized by means of X-ray diffraction (XRD), charge/discharge cycling, cyclic voltammetry and SEM. XRD experiment revealed that the layered Li[Ni1/3Mn1/3Co1/3]O2 material can be best synthesized at temperature of 800 °C. In that synthesized temperature, the sample showed high discharge capacity of 190 mAh g−1 as well as stable cycling performance at a current density of 0.2 mA cm−2 in the voltage range 2.3-4.6 V. The reversible capacity after 100 cycles is more than 190 mAh g−1 at room temperature.  相似文献   

19.
Nano-sized composite powder which consisted of two manganese-based oxides, alpha manganese dioxide (α-MnO2) and spinel Li-Mn-O, was successfully formed by intergrowth of the spinel phase inside α-MnO2. This composite oxide was synthesized by precipitation and heat treatment in air; α-manganese dioxide powder was firstly prepared by oxidative precipitation of Mn(II) with K2S2O8 in an aqueous solution, and then a mixture of the obtained manganese oxide powder and LiOH methanol solution was heat-treated in air. Electron microscopy and diffraction observations confirmed that the manganese oxide composite consisted of nano-sized grains of the spinel LiMn2O4 and α-MnO2 phases. It was found that this α-MnO2/spinel LiMn2O4 composite electrode exhibited highly reversible lithium insertion compared to the pristine α-MnO2 and conventional LiMn2O4, that is, the composite demonstrated high discharge capacity of 148 mAh g−1 as a cathode material of lithium cells in the potential range of 2.5-4.3 V with no significant capacity fading. It was thought that the intimately mixing of two oxides on a nanometer scale helped to maintain structural integrity on charge-discharge cycling, which leads to excellent capacity retention for both of the spinel and alpha-type manganese oxide.  相似文献   

20.
Br-doped Li4Ti5O12 in the form of Li4Ti5O12−xBrx (0 ≤ x ≤ 0.3) compounds were successfully synthesized via solid state reaction. The structure and electrochemical properties of the spinel Li4Ti5O12−xBrx (0 ≤ x ≤ 0.3) materials were investigated. The Li4Ti5O12−xBrx (x = 0.2) presents the best discharge capacity among all the samples, and shows better reversibility and higher cyclic stability compared with pristine Li4Ti5O12, especially at high current rates. When the discharge rate was 0.5 C, the Li4Ti5O12−xBrx (x = 0.2) sample presented the excellent discharge capacity of 172 mAh g−1, which was very close to its theoretical capacity (175 mAh g−1), while that of the pristine Li4Ti5O12 was 123.2 mAh g−1 only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号