首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
High melt viscosity polypropylene was manufactured by grafting bifunctional monomers, HDDA (1,6-hexanediol diacrylate) and TPGDA (tripropyleneglycol diacrylate), onto homo-polypropylene under an electron beam irradiation. Melt complex viscosity (η) of modified polypropylene was sensitive to irradiation dose and monomer content. The melt viscosity of the polypropylene modified with TPGDA increased to 132,290 Pa s (at 190 °C and 0.1 rad/s of frequency) from 5039 Pa s for virgin homo-polypropylene. TPGDA monomer could give higher melt viscosity at low dosages than HDDA monomer, probably due to the structural feature of TPGDA with three numbers of methyl groups.Modified polypropylene with high melt complex viscosity had a broad molecular weight distribution with remarkable shift to higher molecular weight leading to high values of both and . Melt viscosity of modified polypropylene could be properly correlated by the equation , where the term gave a dominant effect for the estimation of η.  相似文献   

2.
Polythiophene (PTh) has been synthesized by chemical oxidative polymerization and used as an active cathode material in lithium batteries. The lithium batteries are characterized by cyclic voltammetry (CV), galvanostatic charge/discharge cycling and electrochemical impedance spectroscopic studies (EIS). The lithium battery with the PTh cathode exhibits a discharge voltage of 3.7 V compared to Li+/Li and excellent electrochemical performance. PTh can provide large discharge capacities above 50 mA h g−1 and good cycle stability at a high current density 900 mA g−1. After 500 cycles, the discharge capacity is maintained at 50.6 mA h g−1. PTh is a promising candidate for high-voltage power sources with excellent electrochemical performance.  相似文献   

3.
《Ceramics International》2017,43(14):11218-11224
Curing green fibres infusible is an essential procedure for the preparation of SiBNC ceramic fibres. Previously, green fibres had been fabricated by one-pot synthesis of polyborosilazane (PBSZ) and melt-spinning. In this paper, we attempted to use the method of electron beam irradiation to crosslink green fibres. The variation of molecular structures from green fibres to cured fibres and the properties of sintered SiBNC fibres were investigated. Via electron beam irradiation, the free radicals are formed at the C atoms and Si atoms on the -N-SiH(CH3)- main chain units and terminal -Si(CH3)3 groups. The radicals react with each other to produce cross-linking, coupling and grafting among PBSZ chains, which all contribute to improvement of the cross-linking density of green fibres. The cured fibres performed a high ceramic yield of 80.4 wt%. After pyrolysis at 1500 °C, SiBNC ceramic fibres were acquired, which exhibited a good flexibility with 12 µm in diameter and 1.22 GPa in tensile strength. The obtained fibres could remain amorphous up to 1700 °C and showed no mass loss at this temperature.  相似文献   

4.
In this study, soluble redox couples were used as active materials for an electrode using a newly designed two-compartment cell. In this cell, liquid electrolyte was separated by a solid electrolyte diaphragm, which prevents dissolved active materials from reaching the counter electrode. To balance the apparent current density and the apparent energy density, a porous sheet made of carbon paper as a current collector was set on the side of the positive electrode with an active material impregnated into it, and Li foil was set on the side of the negative electrode. Some soluble benzoquinone derivatives were examined by charge/discharge cycling for use as active materials of the positive electrode in lithium secondary batteries. Some of them showed specific capacities close to the theoretical values, assuming two-electron reduction. Among them, 2,5-dipropoxy-1,4-benzoquinone (DPBQ) could be cycled regardless of whether the amount used exceeded the solubility (with precipitate in the electrolyte) or not (all is dissolved). This implies that the active material reacts at the surface of the current collector in the dissolved state, and the precipitated fraction also participates by dissolution into the electrolyte. The results also suggest that a good cycle performance using our two-compartment cell requires an active material with relatively high solubility.  相似文献   

5.
Titania thin films were prepared through the anodisation of titanium metal in a 1.0 M sulphuric acid solution at 80 °C utilising a series of pulsed dc constant currents of increasing magnitude. Films were then tested as a potential anode material for lithium batteries using a variety of techniques. Electrochemical testing revealed that the films (3.8 cm2) offered good rate capabilities affording a constant capacity of 48 μAh for a constant current of 10 μA which decreased to 25 μAh on increasing the current to 1250 μA. Cyclic voltammetry was conducted over a range of scan rates from which capacitive currents were examined and rate constants, transfer coefficients and diffusion coefficients calculated. Electrochemical impedance spectroscopy was conducted over six potentials in the range 0.1-2.7 V with the experimental data successfully modelled using an equivalent circuit with the notation R(Q(RW))C. TEM observation of focussed ion beam milled cross-sections showed significant structural differences between the as-anodised film and those cycled in a lithium battery. Raman spectroscopy showed that the films had an anatase character that transformed into an unidentified lithium-containing, titanate phase on cycling. Based on a film thickness of 100 nm, and assuming density of 4 g cm−3 such films offered a stable capacity of 316 mAh g−1.  相似文献   

6.
Asymmetrical dicationic ionic liquids based on the combination of imidazolium and aliphatic ammonium cations with TFSI anion, MICnN111-TFSI2, have been synthesized for the first time, wherein MI represents imidazolium cation, N111 represents trimethylammonium cation, and Cn represents spacer length. The physical and electrochemical properties of this family of ionic liquids were studied. 1-(3-Methylimidazolium-1-yl)ethane-(trimethylammonium) bi[bis(trifluoromethane-sulfonyl) imide] (MIC2N111-TFSI2) shows solid-solid transition characteristics. 1-(3-Methylimidazolium-1-yl)pentane-(trimethylammonium) bi[bis(trifluoromethan-esulfonyl)imide] (MIC5N111-TFSI2) has one of the lowest solid-liquid transformation temperatures among analogues, and belongs to the greatest thermal stable ionic liquids. Additionally, it has an order of conductivity of 10−1 ms cm−1, and electrochemical window of about 3.7 V at room temperature. To evaluate the potential of MIC5N111-TFSI2 as an additive of electrolyte for lithium secondary batteries, cells composed of LiMn2O4 cathode/1 M LiPF6 in EC:DMC (1:1, v/v) electrolytic solution containing 5 wt% of MIC5N111-TFSI2/lithium metal anode have been prepared. The charge-discharge cycling test reveals that unlike the cases of Li/LiMn2O4 cells employing a conventional electrolyte with a monocationic ionic liquid, such as 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (EtMeImTFSI) as an additive, the performances of Li/LiMn2O4 cells do not drop with the addition of MIC5N111-TFSI2 at 1C rate, moreover, the cell exhibits better discharge capacity and cycle durability compared with the cell using the conventional electrolyte.  相似文献   

7.
《Ceramics International》2021,47(24):33972-33977
High entropy oxides (HEOs) have attracted the attention of researchers due to their high theoretical specific capacity and structural stability. However, the effect of elements in HEOs on material properties is unknown. In this work, HEOs (FeNiCrMnZn)3O4 and (FeNiCrMnMg)3O4 were successfully synthesized and used as anode materials for lithium ion batteries. The effects of Zn and Mg on the properties of HEOs were studied from the aspects of crystal structure, micro morphology, and surface valence. Results show that Zn enhances the lithium storage performance of HEOs theoretically, which is verified in the later electrochemical performance tests. (FeNiCrMnZn)3O4 is better than (FeNiCrMnMg)3O4 in all aspects of rate properties, cycle performance, and electrochemical impedance spectroscopy. Therefore, the introduction of electrochemically active metals, such as Zn, can improve the performance of HEOs, thereby providing ideas for the subsequent design and application of HEOs.  相似文献   

8.
A novel conductive sulfur-containing nanocomposite cathode material was synthesized by heating the mixture of sublimed sulfur and multi-walled carbon nanotubes (MWNTs) in certain conditions. The cathode with MWNTs-sulfur nanocomposite (MSN) material shows the improvement of not only the charge-discharge capacity but also cycle durability. From the results, it is confirmed that the MWNTs shows a vital role on adsorbing sublimed sulfur and the polysulfides within the cathode and is an excellent electric conductor for the lithium-sulfur rechargeable system. It can effectively prevent the shuttle behavior of the lithium-sulfur battery.  相似文献   

9.
Cathode materials modified by surface coating for lithium ion batteries   总被引:2,自引:0,他引:2  
C. Li  L.J. Fu  Y.P. Wu  E. Rahm  H.Q. Wu 《Electrochimica acta》2006,51(19):3872-3883
Recent research results confirm the importance of structural surface features of cathode materials for their electrochemical performance. Modification by coating is an important method to achieve improved electrochemical performance, and the latest progress was reviewed here. When the surface of cathode materials including LiCoO2, LiNiO2, LiMn2O4 and LiMnO2 is coated with oxides such as MgO, Al2O3, SiO2, TiO2, ZnO, SnO2, ZrO2, Li2O·2B2O3-glass and other materials, the coatings prevent the direct contact with the electrolyte solution, suppress phase transition, improve the structural stability, and decrease the disorder of cations in crystal sites. As a result, side reactions and heat generation during cycling are decreased. Accompanying actions such as suppression of Mn2+ dissolution, increase in conductivity and removal of HF in electrolyte solutions have been observed. Consequently, marked improvement of electrochemical performance of electrode materials including reversible capacity, coulomb efficiency in the first cycle, cycling behavior, rate capability and overcharge tolerance has been achieved. In conclusion, further directions are suggested for the surface modification of electrode materials. With further understanding of the effects of the surface structure of cathode materials on lithium intercalation and de-intercalation, better and/or cheaper cathode materials from surface modification will come up in the near future.  相似文献   

10.
The structure and morphology of isotactic polypropylene (iPP), functionalized by electron beam irradiation at room temperature in air, are investigated by elementary analysis, FT‐infrared (FTIR) spectroscopy, electron spectroscopy for chemical analysis (ESCA), polariscope, and static contact angle. Elementary analysis reveals that the element oxygen has been introduced onto iPP chains after electron beam irradiation. In addition, as shown from FTIR spectra, oxygen‐containing groups, such as carbonyl, carboxyl, and ether groups, are introduced onto iPP molecular chains. The dependence of oxygenation extent (as measured by O1S/C1S value of ESCA spectra) on electron beam dose is obtained. Under polariscope, it can be observed that the dominant alpha phase appears to become more enhanced, and there is no crystalline phase transition. The static contact angle of iPP decreases with increasing dose. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 75–82, 2000  相似文献   

11.
In our previous work, 10 Wh-class (30650 type) lithium secondary batteries, which were fabricated with LiNi0.7Co0.3O2 positive electrodes and graphite-coke hybrid carbon negative electrodes, showed an excellent cycle performance of 2350 cycles at a 70% state of charge charge-discharge cycle test. However, this cycle performance is insufficient for dispersed energy storage systems, such as home use load leveling systems. In order to clarify the capacity fade factors of the cell, we focused our investigation on the ability discharge capacity of the positive and negative electrodes after 2350 cycles. Although the cell capacity deteriorated to 70% of its initial capacity after 2350 cycles, it was confirmed that the LiNi0.7Co0.3O2 positive electrode and graphite-coke hybrid negative electrode after 2350 cycles still have sufficient ability discharge capacity of 86 and 92% of their initial capacity, respectively. Accompanied by the result for a composition analysis of the positive electrode material by inductively coupled plasma (ICP) spectroscopy and atomic absorption spectrometry (AAS), electrochemical active lithium decreased and the LixNi0.7Co0.3O2 positive electrode could be charged-discharged in a narrow range of between x=0.41 and 0.66 in the battery, although it had enough ability discharge capacity that can use between x=0.36 and 0.87. It is predicted that solid electrolyte interface formation by electrolyte decomposition on the carbon negative electrode during the charge-discharge cycle test is a main factor of the decrease of electrochemical active lithium.  相似文献   

12.
《Ceramics International》2022,48(8):10428-10437
Anatase TiO2 samples with three different morphologies were successfully prepared by the solvothermal method, and their photoelectric properties were tested. The mixed anatase TiO2 demonstrated the best photoelectrochemical water splitting performance with a photocurrent density of 0.84 mA/cm2 (1.23V vs. reversible hydrogen electrode (RHE)), carrier concentration of 1.29 × 1022 cm-3, and interface resistance of 29.20 Ω. Further, the anatase TiO2 samples with different morphologies were doped with nitrogen ions by electron beam irradiation in order to modify the defect concentration in these samples. Among them, the photocurrent density of mixed anatase TiO2 irradiated by 100 kGy obtained the highest current density at 0.99 mA/cm2 (1.23 V vs. RHE). Moreover, its carrier concentration reached 2.46 × 1022 cm-3 and interface resistance was reduced to 11.24 Ω. The photocatalytic properties of TiO2 with different morphologies and the effects of irradiation and nitrogen doping on the properties of the samples were investigated.  相似文献   

13.
In this paper, Li4Ti5O12 (LTO) hollow microspheres with the shell consisting of nanosheets have been synthesized via a hydrothermal route and following calcination. Because of the favorable transport properties of this hollow structure, it is the rate performance at high current densities which is exceptional. When the LTO hollow microspheres were used as the anode material in lithium ion battery, they exhibited superior rate performance and high capacity even at a very high rate (131 mAh g−1 at 50 C).  相似文献   

14.
Starch‐based plastic films were prepared by the electron beam irradiation of starch and poly(vinyl alcohol) (PVA) in a physical gel state at room temperature. The influence of starch/PVA composition, irradiation dose, and plasticizer (glycerol) on the properties of the plastic films was investigated. The gel fraction of the starch/PVA films increased with both the radiation dose and PVA content in the plastic film and decreased with increasing glycerol concentration. The starch/PVA compatibility was determined by measurement of the thermal properties of the starch/PVA blends with various compositions with differential scanning calorimetry. The swelling of the starch/PVA films increased with increasing PVA content and decreasing irradiation dose. Mechanical studies were carried out, and the tensile strength of the films decreased at high starch ratios in the starch‐based mixture. This was due to the decrease in the degree of crosslinking of starch. Furthermore, when PVA, a biodegradable and flexible‐chain polymer, was incorporated into the starch‐based films, the properties of the films, such as the flexibility (elongation at break), were obviously improved. The tensile strength of the films decreased with increasing glycerol concentration, but elongation at break increased up to a maximum value at a 20% glycerol concentration, and then, it leveled off and decreased slightly. Biodegradation of the starch/PVA plastic films was indicated by weight loss (%) after burial in soil and morphological shape, which was detected by scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 504–513, 2007  相似文献   

15.
Glass–ceramic Li2S–GeS2–P2S5 electrolytes were prepared by a single step ball milling (SSBM) process. Various compositions of Li4−xGe1−xPxS4 from x = 0.70 to x = 1.00 were systematically investigated. Structural analysis by X-ray diffraction (XRD) showed gradual increase of the lattice constant followed by significant phase change with increasing GeS2. All-solid-state LiCoO2/Li cells were tested by constant-current constant-voltage (CCCV) charge–discharge cycling at a current density of 50 μA cm−2 between 2.5 and 4.3 V (vs. Li/Li+). In spite of the high conductivity of the solid-state electrolyte (SSE), LiCoO2/Li cells showed a large irreversible reaction especially during the first charging cycle. Limitation of instability of Li2S–GeS2–P2S5 in contact with Li was solved by using double layer electrolyte configuration: Li/(Li2S-P2S5/Li2S–GeS2–P2S5)/LiCoO2. LiCoO2 with SSEs heat-treated with elemental sulfur at elevated temperature exhibited a discharge capacity of 129 mA h g−1 at the second cycle and considerably improved cycling stability.  相似文献   

16.
采用电子束加速器辐射接枝方法对聚丙烯腈(PAN)基碳纤维进行表面改性,研究了接枝单体种类对接枝率及其环氧树脂基复合材料力学性能的影响,分析了辐射接枝前后PAN基碳纤维的表面形貌与化学结构以及其复合材料界面断口的形貌变化。结果表明:电子束辐射接枝改性的PAN基碳纤维表面粗糙度增加,表面活性官能团增多,与树脂的机械锲合作用增强,其树脂基复合材料断口表而较为平整;乙二胺/水溶液体系是辐射接枝改性的理想溶液,在200 kGy的电子束辐射下,PAN基碳纤维表面的接枝率为6.66%,复合材料的层间剪切强度提高了45.1%。  相似文献   

17.
Dynamic mechanical thermal analysis (DMTA) has been applied on medical grade ultra high molecular weight polyethylene of different crosslink density as prepared by electron beam irradiation to probe for contributions from crosslinking as well as crystallization. The crosslinking proceeds at a crystalline structure with a crystallinity about 50%. With increasing irradiation dose from 0 to 110 kGy, the molar mass between adjacent crosslinks decreases significantly to reach 3170 g/mol at lowest, whereas the crystallite thickness changes and new thin lamellae grow at almost constant degree of crystallinity. From DMTA in the entire temperature range from ?150 to +140°C and the angular frequency range from 0.6 to 135.4 Hz, three relaxation processes γ, β, and α of different temperature position and activation energy are distinguished. The corresponding chain mobility has been discussed as a sensitive discriminator for the coexisting crosslinked and lamellar phases showing the same dimension of a couple of 10 of nanometres. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
In this article, we report the synthesis of crosslinked chitosan using 8 MeV electron beam (EB) irradiation in the presence of carbon tetrachloride. The crosslinked chitosan is characterized by dissolution, Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning colorimetry (DSC), and nanoindentation studies. The insolubility of irradiated films in acetic acid indicates that chitosan has undergone crosslinking reaction. FTIR analysis also confirms the crosslinked structure of chitosan. Mechanical properties such as elastic modulus and hardness are calculated from the nanoindentation data. Modulus and hardness of chitosan increase with increase in the irradiation dose due to the increase in the crosslinking. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Nylon 66 has been transformed into a material with significantly improved properties like hardness, tensile strength, and flexural modulus by processing it under the optimized dose rate of electron beam in the presence of suitable crosslinkers. Furthermore, percent water absorption of nylon 66 was reduced substantially on irradiation. Thermogravimetric analysis revealed that thermal stability of nylon 66 improved with increasing dose of radiation. Improvement of mechanical and thermal properties and reduction of water absorption of nylon 66 were due to the crosslinking of polyamide molecules made possible by the high energy radiation. Increase of crosslinking with increasing radiation dose was verified by the increase of gel content at higher doses. Differential scanning calorimetry showed that both melting and crystallization temperatures along with percent crystallinity of nylon 66 were decreased with the increasing dose of radiation leading to the development of more amorphous character in this semicrystalline polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

20.
10 Wh-class (30650 type) lithium secondary batteries were fabricated using LiNi0.7Co0.3O2 as the positive electrode material and graphite/coke hybrid carbon as the negative electrode material. In our previous work, we found that LiNi0.7Co0.3O2 and graphite/coke hybrid carbon each provide a longer cycle life among several candidates (Kida et al., J. Power Sources 94 (2001) 74; Kida et al., in preparation; Kinoshita et al., J. Power Sources 102 (2001) 284). In this study, the cycle performance of cells using both LiNi0.7Co0.3O2 and graphite/coke hybrid carbon was examined and the deterioration factor of the discharge capacity was investigated during charge/discharge tests. We then focused our interest on the negative electrode and analyzed it using 7Li nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). After the discharge capacity of the battery deteriorated to 70% of the rated capacity after 2000 cycles, the graphite/coke hybrid carbon showed 91% of initial discharge capacity. When the solid electrolyte interface (SEI) (LiF, Li2CO3 and polymers) (E. Peled, J. Electrochem. Soc. 126 (1979) 2047) on the carbon negative electrode became thicker in the charge/discharge cycle test, the impedance was considered to have increased. This suggests that the deterioration of the graphite/coke hybrid carbon material is not so large, but that the production of the SEI on the negative electrode and impedance change of the negative electrode are factors of the capacity fade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号