共查询到20条相似文献,搜索用时 15 毫秒
1.
pH sensing in aqueous solutions using a MnO2 thin film electrodeposited on a glassy carbon electrode
An electrolysis technique at a constant potential was used to develop a highly reproducible and fast elaboration method of adherent manganese dioxide thin films on a glassy carbon electrode from aqueous solutions containing sulfuric acid and manganese sulfate. The resulting films were found to have a nanostructured character presumably due rather to birnessite (δ-MnO2) than to γ-MnO2, as suggested by their Raman and XRD signatures. They lead to modified electrodes that present an obvious although complex pH dependent potentiometric response. This sensor indeed showed a single slope non-Nernstian linear behaviour over the 1.5–12 pH range for increasing pH direction (“trace”), whereas a Nernstian two slopes linear behaviour was observed for decreasing pH direction (“re-trace”). Preliminary EIS experiments carried out at a pH value of 1.8 seem to reveal a sensitivity mechanism based on proton insertion process at least at highly acidic pH values. 相似文献
2.
Process of self-growth nanocrystalline structure was explored to improve the dielectric properties of amorphous Sr0.925Bi0.05TiO3 (SBT) thin films through controlling the annealing temperature. The crystallinity of the material was 15% when annealed at 550?°C, and the resulting nanocrystalline particles were 14?nm in size as determined by XRD analysis. Therefore, the proposed process could produce a novel film of an amorphous matrix coating nanocrystalline particles. Finite element analysis results showed that the applied electric field was focused primarily in the amorphous matrix, which could effectively decrease the probability of low voltage breakdown of the nanocrystalline particles. Simultaneously, the nanocrystalline particles supplied more polarization charges, which helped to improve the dielectric constant of the inorganic composite. Combining the merits of amorphous and crystalline phases, the ultimate energy storage density of the modified sample was as high as 21.2?J/cm3, which represents an improvement of 5.1?J/cm3 compared with that of pure amorphous SBT thin film. 相似文献
3.
In this paper, we have studied the impact of postannealing treatment on the structural properties and sensing characteristics of CeTiO3 ceramic membranes deposited on Si substrate by sputtering for solid-state electrolyte-insulator-semiconductor (EIS) pH sensors. X-ray photoelectron spectroscopy, Auger electron spectroscopy, X-ray diffraction, and atomic force microscopy were used to study the chemical compositions, elemental depth profiles, film structures, and surface morphologies of CeTiO3 ceramic membranes treated at three rapid thermal annealing (RTA) temperatures of 700, 800 and 900?°C. The sensing performance of the CeTiO3 ceramic membranes annealed at three different RTA temperatures is strongly correlated to their structural properties. The CeTiO3 EIS device after RTA at 800?°C exhibited the best sensing characteristics (pH sensitivity, hysteresis voltage and drift rate) among these RTA temperatures. We attribute this behavior to the optimal RTA temperature enhancing the Ce3+/Ce4+ ratio of CeTiO3 ceramic membrane, reducing an interfacial layer at the CeTiO3-Si interface, and increasing its surface roughness. 相似文献
4.
Song Wang 《Electrochimica acta》2007,53(4):1883-1889
Nanocrystalline TiO2 films are widely investigated as the electrodes of dye-sensitized solar cell(s) with different preparation methods. In this paper, thin titanium dioxide films have been prepared on titanium plates by the micro-plasma oxidation method in the sulfuric acid solution. The thin TiO2 films were sensitized with a cis-RuL2(SCN)2·2H2O (L = cis-2,2′-bipyridine-4,4′-dicarboxylic acid) ruthenium complex and implemented into a dye-sensitized solar cell configuration. The influence of reaction current density (10, 15, 20, 25 and 30 A dm−2) on the structural and the surface morphology of the films was investigated by X-ray diffraction, scanning electron microscopy, atom force microscopy and X-ray photoelectricity spectroscopy. Impedance analysis for dye-sensitized solar cells was carried out by electrochemical impedance spectroscopy. The results show that the rise of current density leads to the increase in the amount of rutile and the thickness of the TiO2 film, which makes the TiO2 films have different photovoltages and photocurrents. The relatively higher photoelectricity properties were obtained in the TiO2 films prepared at a current density of 20 A dm−2. The open-circuit voltage and the short-circuit current are 605 mV and 165 μA cm−2, respectively. 相似文献
5.
C.J. Tang I. AbeA.J.S. Fernandes M.A. NetoL.P. Gu S. PereiraH. Ye X.F. JiangJ.L. Pinto 《Diamond and Related Materials》2011,20(3):304-309
In this work, we report high growth rate of nanocrystalline diamond (NCD) films on silicon wafers of 2 inches in diameter using a new growth regime, which employs high power and CH4/H2/N2/O2 plasma using a 5 kW MPCVD system. This is distinct from the commonly used hydrogen-poor Ar/CH4 chemistries for NCD growth. Upon rising microwave power from 2000 W to 3200 W, the growth rate of the NCD films increases from 0.3 to 3.4 μm/h, namely one order of magnitude enhancement on the growth rate was achieved at high microwave power. The morphology, grain size, microstructure, orientation or texture, and crystalline quality of the NCD samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, and micro-Raman spectroscopy. The combined effect of nitrogen addition, microwave power, and temperature on NCD growth is discussed from the point view of gas phase chemistry and surface reactions. 相似文献
6.
Bin Xu 《Electrochimica acta》2010,55(8):2859-1590
In this work, a novel type electrode based on RuO2 nanoparticles-modified vertically aligned carbon nanotubes (RuO2/MWCNTs) was prepared by magnetron sputtering deposition. This RuO2/MWCNTs electrode not only shows a high capacity nature, but also possesses a good response to the pH value. The pH sensor based on the RuO2/MWCNTs nanocomposite electrode exhibits some advantages over the conventional pH sensors. It shows good reproducibility, long-term storage stability (over 1 month) and linear response in the whole pH range (2-12) of Britton-Robinson (B-R) buffer solutions with near-Nernstian response (about −55 mV/pH). The hysteretic widths of the nanocomposite electrode are 6.4 mV, 5.1 mV and 10.2 mV in pH 7-4-7-10-7, pH 7-10-7-4-7 and pH 2-8-12-8-2 loop cycles, respectively. Moreover, the RuO2/MWCNTs electrode displays an excellent anti-interference property and fast response time (less than 40 s). According to the electrochemical impedance measurements, the pH sensing properties of the RuO2/MWCNTs electrode were also discussed. 相似文献
7.
Lead-free Bi0.5(Na0.8K0.2)0.5TiO3 (abbreviated as BNKT) thin films were grown on Pt(111)/Ti/SiO2/Si substrates using a sol-gel/spin coating technique and were then annealed at different temperatures (350 °C, 550 °C, 750 °C and 850 °C). Analysis of the XRD patterns and FT-IR spectra were used to determine the main reactions and the phase formation process of BNKT thin films during the sol-gel process. The results show that the dielectric constant of the thin films attains a maximum at a set temperature and then decreases at higher annealing temperatures, which can be attributed to phase formation and transformation. Moreover, the morphologies of the BNKT thin films improve with the increase in grain size and the formation of distinct grain boundaries. Furthermore, through increasing the pH of the precursor solutions, the size of the sol-gel colloidal particles increases slightly and the grains formed from the corresponding solutions tend to be small and uniform. 相似文献
8.
Nanocrystalline zinc aluminate (ZnAl2O4) particles with a spinel structure were prepared by hydrolyzing a mixture of aluminum chloride hexahydrate and zinc chloride in deionized water. It was found that pH value and reaction temperature play critical roles in the formation of nano-sized ZnAl2O4. Depending on pH values in the precursor solution, ZnAl layered double hydroxide (ZnAl-LDH), ZnO, boehmite or gibbsite could be formed. At pH 7 and T>120 °C, the nanocrystalline ZnAl2O4 particles with average particle size of ∼5 nm are easily synthesized through ZnAl layered double hydroxide (ZnAl-LDH). After surface treatment with R-OH by using the cationic surfactant CTAB, the ZnAl2O4/Eu core-shell structure can be developed. The ZnAl2O4/Eu core-shell structure can show both emissions from 5D0 to 7F2 sensitivity energy level and 5D2 to 7F0 depth energy level. 相似文献
9.
In this paper, a novel solid state pH sensor was fabricated by anodization of titanium substrate electrode. The relationship between pH sensitivity and hydrophilicity or surface morphology of TiO2 film was investigated. Amorphous TiO2 nanotube has better pH response than anatase TiO2 nanotube. After being irradiated by ultraviolet light (UV), the potential response of the electrode modified by amorphous TiO2 nanotube was close to Nernst equation (59 mV/pH). SEM, XRD, and XPS were used to characterize electrodes. Possible mechanism was discussed by analyzing surface hydroxyl groups, crystal structure and hydrophilicity of the electrodes. The electrode has been used to detect some kinds of soft drinks and shows good response. 相似文献
10.
S. Zargouni L. Derbali M. Ouadhour M. Rigon A. Martucci H. Ezzaouia 《Ceramics International》2019,45(5):5779-5787
It is widely demonstrated that the synthesis conditions of sol-gel films have a great impact on their gas sensing properties. In this work, transparent PVP-assisted nickel oxide thin films with an average grain size of ~5?nm were synthesized using two distinctive deposition procedures combining the sol-gel method with the spin-coating technique then tested as optical gas sensors for the detection of hazardous pollutant gases. The first method is ascribed to a typical spin-coating deposition followed by a thermal annealing, and the second method consisted on a multistep coating annealing process. Structural and morphological studies showed enhanced crystallization rate and homogeneous surface morphology using a multistep deposition. The as prepared films exhibit a clear and reversible response toward H2, CO and NO2 gases and the multistep deposition process enhanced the sensitivity of about 113% and 194% toward 1% of H2 and 0.1% of NO2 respectively. The shrinkage of the band gap from 4.07 to 3.91?eV and the increased PL intensity indicate the presence of higher rate of charge density and intrinsic defect states that promoted the sensitivity of the film. Furthermore, improved response intensity was detected in the near UV region and higher stability with fast response was obtained for hydrogen gas. 相似文献
11.
MoO3 and V2O5 thin films were prepared on glass substrates by Spray Pyrolysis technique at a substrate temperature of 423 K. The precursor solutions were obtained by varying the concentrations of MoCl5 and VCl3 in bi-distilled water. The structural investigation conducted by X-ray diffraction showed that MoO3 and V2O5 thin films were polycrystalline with orthorhombic structure. The optical properties studied in the 300–2500 nm range suggest that the thin film behaviours are related to bound electronic states. The optical band gaps have been estimated from slopes of ln(hν) versus hν plots of MoO3 and V2O5 films were 3.35 and 2.44 eV, respectively. The electrical conductivity was measured using four probes method. 相似文献
12.
Hui Xia 《Electrochimica acta》2007,52(24):7014-7021
LiCoO2 thin films were prepared by pulsed laser deposition (PLD) on Pt/Ti/SiO2/Si (Pt) and Au/MgO/Si (Au) substrates, respectively. Crystal structures and surface morphologies of thin films were investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The LiCoO2 thin films deposited on the Pt substrates exhibited a preferred (0 0 3) texture with smooth surfaces while the LiCoO2 thin films deposited on the Au substrates exhibited a preferred (1 0 4) texture with rough surfaces. The electrochemical properties of the LiCoO2 films with different textures were compared with charge-discharge, dQ/dV, and Li diffusion measurements (PITT). Compared with the (1 0 4)-textured LiCoO2 thin films, the (0 0 3)-textured thin films exhibited relatively lower electrochemical activity. However, the advantage of the (1 0 4)-textured film only remained for a small number of cycles due to the relatively faster capacity fade. Li diffusion measurements showed that the Li diffusivity in the (0 0 3)-textured film is one order of magnitude lower than that in the (1 0 4)-textured film. As discussed in this paper, we believe that Li diffusion through grain boundaries is comparable to or even faster than Li diffusion through the grains. 相似文献
13.
Two-dimension (2D) CeO2-SnO2 nanosheets with uniform size and small rhombus nanopores were synthesized by the hydrothermal method. The structure of CeO2-SnO2 nanosheets was confirmed by X-ray diffraction (XRD), energy dispersive spectrometer (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The gas sensing behaviors of the fabricated sensors were systematically investigated. Under optimum operating temperature (340 °C), the response to 100 ppm ethanol of the CeO2-SnO2 sensor was 44, which was 2 times larger than that of the SnO2 sensor (about 19). The response and recovery time of the CeO2-SnO2 sensor were 25 s and 6 s, while that of the SnO2 sensor were 29 s and 7 s, respectively. The results revealed that porous CeO2-SnO2 nanosheets enhanced the gas sensing properties and shortened the response/recovery time, which were attributed to the porous structure and the effect of the CeO2-doping. In addition, the ethanol sensing mechanism was carefully discussed. 相似文献
14.
Tien-Syh Yang Jir-Yon Lai Chia-Liang Cheng Ming-Show Wong 《Diamond and Related Materials》2001,10(12):2161-2166
The influence of Ar addition to CH4/H2 plasma on the crystallinity, morphology and growth rate of the diamond films deposited in MPCVD was investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. X-Ray diffraction patterns indicate that diamond films of strong (111) and weak (400) texture are produced in these samples. Faceted diamond gradually turns into ballas-like diamond with graphitic inclusions when the Ar concentration increases to above 30 vol.%, as indicated by Raman spectra. As the Ar concentration goes above 90 vol.%, nanocrystalline diamond films are formed, characterized by a 1150-cm−1 peak in the Raman spectra and morphology observation. Diamond growth by CH3 or by C2 mechanism is proposed to interpret the change in the growth rate of diamond films with the variation of Ar content in the plasma. 相似文献
15.
LiMn2O4 thin films were deposited on Au substrates by pulsed laser deposition (PLD). The Li-ion chemical diffusion coefficients of the films, , were measured by cyclic voltammetry (CV), galvanostatic intermittent titration technique (GITT), potentiostatic intermittent titration technique (PITT), and electrochemical impedance spectroscopy (EIS). It was found that the values by CV and PITT were in the order of 10−13 cm2 s−1, and those by EIS and GITT were in the range of 10−13 to 10−11 and 10−14 to 10−11 cm2 s−1, respectively. These data were compared with the previously reported values. 相似文献
16.
A pyrimidine derivative, 2-isopropyl-6-methyl-4-pyrimidinol (IMP), could be completely decomposed following pseudo-first-order kinetics by photocatalytic reaction using TiO2. The effects of pH and surface modification of TiO2 with SiOx were studied. The degradation rate of IMP was fast in mild acidic condition (pH=6.3) and slower in strong acidic (pH=2.0) or basic (pH=10.0) condition. The main reason of the slow IMP degradation was different in strong acidic and basic conditions. In strong acidic condition, the slow degradation rate was explained by electrostatic repulsion. On the other hand, a little formation of hydroxyl radicals was considered as a main reason in strong basic condition. The result was supported by the experiments using SiOx-loaded TiO2, which has a lower isoelectric point than pure TiO2. 相似文献
17.
F. M. Pontes M. A. M. A. Maurera A. G. Souza E. Longo E. R. Leite R. Magnani M. A. C. Machado P. S. Pizani J. A. Varela 《Journal of the European Ceramic Society》2003,23(16):3001-3007
Polycrystalline BaWO4 and PbWO4 thin films having a tetragonal scheelite structure were prepared at different temperatures. Soluble precursors such as barium carbonate, lead acetate trihydrate and tungstic acid, as starting materials, were mixed in aqueous solution. The thin films were deposited on silicon, platinum-coated silicon and quartz substrates by means of the spinning technique. The surface morphology and crystal structure of the thin films were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, and specular reflectance infrared Fourier transform spectroscopy, respectively. Nucleation stages and surface morphology evolution of thin films on silicon substrates have been studied by atomic force microscopy. XRD characterization of these films showed that BaWO4 and PbWO4 phase crystallize at 500 °C from an inorganic amorphous phase. FTIR spectra revealed the complete decomposition of the organic ligands at 500 °C and the appearance of two sharp and intense bands between 1000 and 600 cm−1 assigned to vibrations of the antisymmetric stretches resulting from the high crystallinity of both thin films. The optical properties were also studied. It was found that BaWO4 and PbWO4 thin films have Eg=5.78 eV and 4.20 eV, respectively, of a direct transition nature. The excellent microstructural quality and chemical homogeneity results confirmed that soft solution processing provides an inexpensive and environmentally friendly route for the preparation of BaWO4 and PbWO4 thin films. 相似文献
18.
Agnieszka Kapa?ka Stéphane Fierro Zacharias Frontistis Alexandros Katsaounis Stefano Neodo Olivier Frey Nico de Rooij Kai M. Udert Christos Comninellis 《Electrochimica acta》2011,56(3):1361
The electrochemical oxidation of ammonia (NH4+/NH3) in sodium perchlorate was investigated on IrO2 electrodes prepared by two techniques: the thermal decomposition of H2IrCl6 precursor and the anodic oxidation of metallic iridium. The electrochemical behaviour of Ir(IV)/Ir(III) surface redox couple differs between the electrodes indicating that on the anodic iridium oxide film (AIROF) both, the surface and the interior of the electrode are electrochemically active whereas on the thermally decomposed iridium oxide films (TDIROF), mainly the electrode surface participates in the electrochemical processes.On both electrodes, ammonia is oxidized in the potential region of Ir(V)/Ir(IV) surface redox couple activity, thus, may involve Ir(V). During ammonia oxidation, TDIROF is deactivated, probably by adsorbed products of ammonia oxidation. To regenerate TDIROF, it is necessary to polarize the electrode in the hydrogen evolution region. On the contrary, AIROF seems not to be blocked during ammonia oxidation indicating its fast regeneration during the potential scan. The difference between both electrodes results from the difference in the activity of the iridium oxide surface redox couples. 相似文献
19.
Novel nanostructured, high transparent, and pH sensitive poly(2‐hydroxyethyl methacrylate‐co‐methacryliac acid)/poly(vinyl alcohol) (P(HEMA‐co‐MA)/PVA) interpenetrating polymer network (IPN) hydrogel films were prepared by precipitation copolymerization of aqueous phase and sequential IPN technology. The first P(HEMA‐co‐MA) network was synthesized in aqueous solution of PVA, then followed by aldol condensation reaction, it formed multiple IPN nanostructured hydrogel film. The film samples were characterized by IR, SEM, DSC, and UV‐vis spectrum. The transmittance arrived at 93%. Swelling and deswelling behaviors showed the multiple IPN nanostuctured film had rapid response. The mechanical properties of all the IPN films improved than that of PVA film. Using crystal violet as a model drug, the release behaviors of the films were studied. The results showed that compared with PVA, which had low drug loading and exhibited high and burst release, the three IPN films had high drug loading and exhibited sustained release. Besides, the release followed different release mechanism at pH = 4.0 and pH = 7.4, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
20.
CuInSe2 thin films have been electrodeposited on conductive glass using cyclic pulse electrodeposition. One cycle consists of consequtively applying potentials E1 and E2, each during 10 s and a total of 90 cycles are applied. E1 is chosen between −0.7 and −0.9 VSCE while E2 is fixed at −0.1 VSCE. The films are annealed in argon and then etched in KCN solution to eliminate remnant secondary phases. The material is characterized employing grazing incident X-rays diffraction, Raman spectroscopy, scanning electron microscopy and energy dispersive scanning spectroscopy. The presence of secondary phases seems to be reduced when compared to films prepared at fixed potentials. The films are crystalline and the overall quality improves by annealing in Ar. Photoelectrochemical tests, Mott–Schottky plots and I–V curves confirm p-type conduction. The diffusion regime imposed by the potential pulses could be responsible for the different morphology and composition of samples prepared with pulsed and potentiostatic electrodeposition. 相似文献