共查询到17条相似文献,搜索用时 62 毫秒
1.
一种基于频繁序列树的增量式序列模式挖掘算法 总被引:1,自引:0,他引:1
针对目前现有的增量式序列模式挖掘算法没有充分利用先前的挖掘结果,当数据库更新时,需要对数据库进行重复挖掘的问题。本文提出一种基于频繁序列树的增量式序列模式挖掘算法(ISFST),ISFST采用频繁序列树作为序列存储结构,当数据库发生变化时,ISFST算法分两种情况对频繁序列树进行更新操作,通过遍历频繁序列树得到满足最小支持度的所有序列模式。实验结果表明,ISFST算法在时间性能上优于PrefixSpan算法和IncSpan算法。 相似文献
2.
现有的增量式挖掘算法在支持度发生变化时,需要对序列数据库进行重复挖掘,为减少由此产生的时空消耗,提出一种高效的增量式序列模式挖掘算法。算法采用频繁序列树作为序列存储结构,当序列数据库和最小支持度发生变化时,通过执行更新操作,实现频繁序列树的更新,利用深度优先遍历频繁序列树找到序列数据库中所有的序列模式。实验结果表明,与IncSpan算法和PrefixSpan算法相比,该算法的挖掘效率较高。 相似文献
3.
在原有序列模式挖掘算法基础上,提出了序列模式增量式更新的快速算法SPIU.算法充分利用原有的挖掘结果,并对候选序列集合进行有效地剪枝.测试结果表明,算法是正确和高效的,具有良好的扩放性. 相似文献
4.
在序列数据库更新时,现有的增量式序列模式挖掘算法只提到序列的插入操作和序列的扩展操作两种情况,没有针对序列删除操作。提出了一种基于序列树的增量式序列模式更新算法(ISPST)。当数据库更新时,ISPST算法只需要对与删除序列有关的序列构造投影数据库,实现对序列树的更新操作,通过深度优先遍历序列树得到更新后数据库中的所有序列模式。实验结果表明,当支持度发生变化时,ISPST算法在时间性能上优于PrefixSpan算法和IncSpan算法。 相似文献
5.
6.
7.
8.
一种有效的关联规则增量式更新算法 总被引:6,自引:2,他引:6
关联规则是数据挖掘中的一个重要研究内容。目前已经提出了许多用于高效地发现大规模数据库中的关联规则的算法,而对已发现规则的更新及维护问题的研究却较少。文章提出了基于频繁模式树的关联规则增量式更新算法,以处理事务数据库中增加了新的事务数据集后相应关联规则的更新问题,并对其性能进行了分析。 相似文献
9.
针对序列模式增量式更新挖掘算法产生大量候选项集以及多次扫描数据库的问题,提出了一种有效的增量式更新算法ESPIA,该算法利用基于2-序列矩阵挖掘算法ESPE对原数据库和增加数据库一次扫描产生序列模式,通过对频繁模式和非频繁模式进行相应的剪枝减少了序列的比较和扫描次数,降低了算法时间和空间复杂度,实验证明该算法是有效和准确的。 相似文献
10.
如何确定候选频繁序列模式以及如何计算它们的支持数是序列模式挖掘中的两个关键问题。该文提出了一种基于二进制形式的候选频繁序列模式生成和相应的支持数计算方法,该方法只需对挖掘对象进行一些“或”、“与”、“异或”等逻辑运算操作,显著降低了算法的实现难度,将该方法与频繁序列模式挖掘及更新算法相结合,可以进一步提高算法的执行效率。 相似文献
11.
针对频繁项集增量更新的问题,提出算法FIU。该算法将保存了数据库事务的FP-tree存储在磁盘上,当挖掘新支持度阈值的频繁项集时,只需从磁盘上读入FP-tree,再挖掘新支持度阈值下的频繁项集。当新增数据库事务记录后,首先建立新项目表,然后根据新项目表建立新增事务记录的FP-tree,读入存储在磁盘上的FP-tree,抽取出所有的事务记录,再插入到新FP-tree中.从而得到增量更新后的FP-tree。最后在增量更新后的FP-tree上挖掘频繁项集。实验证明,FIU算法执行时间不随数据库大小变化,与其他算法相比有较好的性能。 相似文献
12.
一种高效的关联规则增量更新算法 总被引:3,自引:0,他引:3
对挖掘关联规则中FUP算法的关键思想以及性能进行了研究,提出了改进的FUP算法SFUP。该算法充分利用原有挖掘结果中候选频繁项集的支持数,能有效减少对数据库的重复扫描次数,并通过实验对这两种算法进行比较,结果充分说明了SFUP算法的效率要明显优于FUP算法。 相似文献
13.
一种新的基于FP-Tree的关联规则增量式更新算法 总被引:2,自引:0,他引:2
挖掘关联规则是数据挖掘研究的一个重要方面,目前已经提出了许多算法用于高效地发现大规模数据库中的关联规则,而维护已发现的关联规则同样是重要的.针对在事务数据库增加和最小支持度同时发生变化的情况下,如何进行关联规则的更新问题进行了研究,提出了一种新的基于频繁模式树的关联规则增量式更新算法,并对该算法进行了分析和讨论. 相似文献
14.
最大频繁项目集的增量式更新算法 总被引:4,自引:0,他引:4
关联规则挖掘已取得了许多有效的算法,但是当事务数据库发生动态变化情况时,频繁项集的挖掘工作仍然是一个复杂的问题。在数据库动态增加的情况下,给出了一种有效的算法——-NEWIUA,它与其它的增量更新算法相比,不同之处在于:NEWIUA对原数据库及新数据库最多只需遍历一次,减少了I/O次数,同时该算法可以保证每次所得的候选项的数目都是最少的。 相似文献
15.
增量更新关联规则挖掘主要解决事务数据库中交易记录不断更新和最小支持度发生变化时关联规则的维护问题。针对目前诸多增量更新关联规则挖掘算法存在效率低、计算成本高、规则难以维护等问题,提出一种基于倒排索引树的增量更新关联挖掘算法。该算法有效地将倒排索引技术与树型结构相结合,使得交易数据库中的数据不断更新和最小支持度随应用环境不同而不断改变时,以实现无需扫描原始交易数据库和不产生候选项集的情况下生成频繁项集。实验结果表明,该算法只需占用较小的存储空间、且检索项集的效率较高,能高效地解决增量更新关联规则难以维护的问题。 相似文献
16.
引入扩展差别矩阵和扩展决策矩阵,提出了新的属性约简算法和增量更新算法,即基于扩展差别矩阵的属性约简算法和基于扩展决策矩阵的增量式规则提取算法,讨论了规则的增量更新算法。由于使用了增量更新算法和并行处理技术,从而提高了数据挖掘的效率,降低了时间复杂度。通过实验说明此算法是有效和可行的。 相似文献
17.
提出一种基于最大频繁模式、模式相似与属性描述相结合的多维序列模式挖掘算法MSP,该算法包括3个步骤:挖掘数据集中的最大频繁模式,每个频繁模式成为一个模式类;比较数据中各序列项序列与各模式类的包含与相似关系;按照一定的规则抽取与各模式类相关的属性,给出以属性为前件、模式类为后件的多维序列规则为形式的多维序列模式挖掘结果.... 相似文献