首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A collection of mutants of Pichia pinus which are unable to grow on ethanol but retain the ability to grow on glucose and methanol, was obtained. Genetic and biochemical analysis of these strains revealed mutations in seven nuclear genes affecting activities of isocitrate lyase (icl1), malate synthase (mls1), phosphoenolpyruvate carboxykinase (pck1), ‘malic’ enzyme (mdd1) and acetyl-CoA synthetase (acs1, acs2 and acs3). All mutations except acs1-acs3 have no effect on the activities of other enzymes involved in C2 metabolism. Mutations acs1, acs2 and acs3 have a pleiotropic action, leading to partial reduction in activities of isocitrate lyase and malate synthase. Ethanol-induced repression of the synthesis of the methanol oxidative enzymes, alcohol oxidase and catalase, is not impaired in these seven mutant classes. On the other hand, C2 compound-induced inactivation of alcohol oxidase and catalase is impaired in mutants acs1, acs2, acs3 and icl1. It was suggested that glyoxylate and acetate (or acetate precursors) act as low molecular weight effectors, ‘switching on’ inactivation and repression, respectively, of alcohol oxidase and catalase in the medium containing ethanol or acetate.  相似文献   

3.
The genes encoding subunits A (vma1) and B (vma2) of the vacuolar H(+)-ATPase from Schizosaccharomyces pombe were cloned by hybridization to cDNAs of the homologous genes in Neurospora crassa. Both genes are interrupted by introns, two in vma1 and four in vma2. Positions of introns do not appear to be conserved when compared to those of N. crassa. The subunit A gene encodes a single product of 619 amino acids and is not interrupted by the coding sequence for a second product as found for Saccharomyces cerevisiae (Kane, P. K., Yamashiro, C. T., Wolczyk, D. F., Neff, N., Goebl, M., and Stevens, T. H. (1990). Science 250, 651-657).  相似文献   

4.
This study was undertaken to evaluate the apparent viscosity within the vacuoles of single Saccharomyces cerevisiae cells by steady‐state fluorescence anisotropy measurements of quinacrine, using wide‐field fluorescence polarization microscopy combined with computer image analysis. Quinacrine was shown to be rather specifically accumulated within the vacuoles of the cells. This accumulation was effectively reversed by ATP depletion of the cells, with no detectable binding of the dye within the vacuoles. Quinacrine fluorescence anisotropy in the sucrose solutions of various viscosities obeyed the Perrin equation. The fluorescence anisotropy of quinacrine was measured in the vacuoles of 39 cells. From cell to cell, this parameter changed in the range 0.032–0.086. Using the Perrin plot as a calibration curve, apparent viscosity values of the vacuolar milieu were calculated for each cell. The population of the cells studied was heterogeneous with regard to vacuolar viscosity, which was in the range 3.5 ± 0.4–14.06 ± 0.64 cP. There was a characteristic distribution of the frequencies of cells with apparent viscosities within certain limits, and cells with viscosity values in the range 5–6 cP were the most frequent. No relationship was found between the sizes of the vacuoles and their apparent viscosities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this investigation, a method for the accurate quantitative determination of net proton production or consumption in biological cultures has been devised. Cells are cultured under constant pH conditions. The specific rate of proton production or consumption by the culture (qH+, mmol h?1 per g biomass) is proportional to the mmol of base or acid required to maintain constant pH per unit time, and this equivalence is independent of the buffering capacity of the culture medium. The above method has been applied to chemostat cultures of Candida utilis growing on glucose or glycerol as carbon source, and different nitrogen sources. The results indicate that the nitrogen assimilation pathway alone determines the value of qH+, and a fixed stoichiometric relationship between nitrogen uptake rate qN (meq h?1 per g biomass) and qH+ has been found for each nitrogen source employed. Thus, qH+/qN values of +1, 0 and ? 1 were found for ammonium ions, urea and nitrate respectively. Under oxidative metabolism, the contribution of carbon catabolism to the value of qH+ was undetectable. Since qN may be related to growth and production of type 1 compounds in fermentation processes, the parameter qH+ was incorporated into a model of growth and energy metabolism in chemostat culture (Castrillo and Ugalde, Yeast 10 , 185–197, 1994), resulting in adequate simulations of experimentally observed culture performance. Thus, it is suggested that qH+ may be employed as a simple and effective control parameter for biotechnological processes involving biomass-related products.  相似文献   

6.
Strains bearing the vph2 mutation are defective in vacuolar acidification. The VPH2 gene was isolated from a genomic DNA library by complementation of the zinc-sensitive phenotype of the mutant. Deletion analysis localized the complementing activity to a 1·2 kb DNA fragment. Sequence analysis of this fragment revealed the presence of a single open reading frame that encoded a protein of 215 amino acids. Computer analysis indicated that the protein, which has a predicted molecular mass of 25 286 Daltons, has two distinct membrane-spanning domains. Biochemical studies indicated that strains bearing the vph2 mutation have greatly reduced levels of vacuolar proton pumping and ATPase activity and that the nucleotide binding subunits of the multimeric vacuolar H+-ATPase failed to be correctly targeted to the vacuolar membrane. The vph2 mutant fails to grow on YEP glycerol medium and on media containing 100 mM -CaCl2 or 4 mM -ZnCl2 or buffered to pH 7·5, a phenotype observed in strains carrying deletions in the genes encoding several vacuolar H+-ATPase subunits. The VPH2 gene is identical to the VMA12 gene (T. Stevens and Y. Anraku, personal communication).  相似文献   

7.
8.
Vacuolar H+‐ATPase (V‐ATPase) is thought to play a role in stress tolerance. In this study it was found that bottom‐fermenting yeast strains, in which the V‐ATPase‐related genes DBF2, VMA41/CYS4/NHS5 and RAV2 were overexpressed, exhibited stronger ethanol tolerance than the parent strain and showed increased fermentation rates in a high‐sugar medium simulating high‐gravity fermentation. Among the strains examined, the DBF2‐overexpressing bottom‐fermenting yeast strain exhibited the highest ethanol tolerance and fermentation rate in YPM20 medium. Using this strain, high‐gravity fermentation was performed by adding sugar to the wort, which led to increased fermentation rates and yeast viability compared with the parent strain. These findings indicate that V‐ATPase is a stress target in high‐gravity fermentation and suggests that enhancing the V‐ATPase activity increases the ethanol tolerance of bottom‐fermenting yeast, thereby improving the fermentation rate and cell viability under high‐gravity conditions. Copyright © 2012 The Institute of Brewing & Distilling  相似文献   

9.
Enzymes of UDP-GlcNAc biosynthesis in yeast   总被引:5,自引:0,他引:5  
D-Glucosamine is an important building block of major structural components of the fungal cell wall, namely chitin, chitosan and mannoproteins. Other amino sugars, such as D-mannosamine and D-galactosamine, relatively abundant in higher eukaryotes, rarely occur in fungal cells and are actually absent from yeast and yeast-like fungi. The glucosamine-containing sugar nucleotide UDP-GlcNAc is synthesized in yeast cells in a four-step cytoplasmic pathway. This article provides a comprehensive overview of the present knowledge on the enzymes catalysing the particular steps of the pathway in Candida albicans and Saccharomyces cerevisiae, with a special emphasis put on mechanisms of the catalysed reactions, regulation of activity and perspectives for exploitation of enzymes participating in UDP-GlcNAc biosynthesis as potential targets for antifungal chemotherapy.  相似文献   

10.
The endoplasmic reticulum (ER) of eukaryotic cells contains a quality control system, that is required for the proteolytic removal of aberrantly folded proteins that accumulate in this organelle. We used genetic and biochemical methods to analyse the involvement of N-glycosylation in the degradation of a mutant derivative of carboxypeptidase yscY in the ER of the yeast Saccharomyces cerevisiae. Our results demonstrate that N-glycosylation of this protein is required for its degradation since an unglycosylated species is retained stably in the ER. Cells that were devoid of the ER-processing α1,2-mannosidase showed reduced degradation of the glycosylated substrate protein. Disruption of CNE1, a gene encoding a putative yeast homologue for calnexin, did not exhibit any effects on the degradation of this substrate protein in vivo. Also, the α1,2-mannosidase-dependent reduction in the degradation rate did not show any correlation with the function of the CNE1 gene product. Our results suggest that the ER of yeast contains a glycosylation-dependent quality control system, as has been shown for higher eukaryotic cells.  相似文献   

11.
The expression of the glyoxylate cycle enzymes is required for growth of the yeast Yarrowia lipolytica on acetate or fatty acids as sole carbon source. Acetyl-coenzyme A, which is produced by acetyl-coenzyme A synthetase (ACS) from acetate, is needed for induction of this expression. Acetate-non-utilizing mutants of this yeast were investigated in order to identify mutants which express no or strongly reduced activity of this enzyme. Mutations in gene ICL2 exhibited the strongest effects on the activity. In icl2 mutants, lack of ACS activity resulted in a non-induced glyoxylate cycle on acetate; however, induction on fatty acids was not affected. Gene ICL2 was identified as the structural gene encoding the monomer of ACS. It is shown that a high level of ACS activity is necessary for full expression of the glyoxylate cycle enzymes. Mutations in gene ICL1, which encodes isocitrate lyase, resulted in overproduction of ACS without any growth on acetate. A new gene (GPR1 = glyoxylate pathway regulation) was detected in which trans-dominant mutations inhibit expression of ACS and the glyoxylate cycle on acetate as carbon source.  相似文献   

12.
对啤酒工业化规模发酵过程中酵母分泌蛋白酶A的规律进行了探讨,对酵母代数及酵母贮存条件等因素对酵母分泌蛋白酶A的影响进行了研究,并对蛋白酶A活性不同的成品纯生啤酒的泡持值、泡沫活性蛋白含量及蛋白酶A活性进行了跟踪分析。结果表明:发酵过程中,蛋白酶A的活性呈上升趋势且接种酵母的蛋白酶A活性越高,与其对应的发酵液中蛋白酶A的活性越高,成品酒的泡沫稳定性越差。另外,随着酵母代数及贮存时间的增加,酵母分泌蛋白酶A的量增加。当酵母蛋白酶A活性控制在0.015U/m L以下且成品酒的初始蛋白酶A活性在15×10-5U/m L以下时,储存4个月的成品纯生啤酒的泡沫稳定性较好。   相似文献   

13.
The Rvs161 and Rvs167 proteins are known to play a role in actin cytokeleton organization and endocytosis. Moreover, Rvs167p functionally interacts with the myosin Myo2p. Therefore, we explored the involvement of the Rvs proteins in vesicle traffic and in cell integrity. The rvs mutants accumulate late secretory vesicles at sites of membrane and cell wall construction. They are synthetic-lethal with the slt2/mpk1 mutation, which affects the MAP kinase cascade controlled by Pkc1p and is required for cell integrity. The phenotype of the double mutants is close to that described for the pkc1 mutant. Synthetic defects for growth are also observed with mutation in KRE6, a gene coding for a glucan synthase, required for cell wall construction. These data support the idea that the Rvs proteins are involved in the late targeting of vesicles whose cargoes are required for cell wall construction.  相似文献   

14.
In the vacuoles of Saccharomyces cerevisiae yeast cells, vividly moving insoluble polyphosphate complexes (IPCs) <1 µm size, stainable by a fluorescent dye, 4′,6‐diamidino‐2‐phenylindole (DAPI), may appear under some growth conditions. The aim of this study was to quantitatively characterize the movement of the IPCs and to evaluate the viscosity in the vacuoles using the obtained data. Studies were conducted on S. cerevisiae cells stained by DAPI and fluorescein isothyocyanate‐labelled latex microspheres, using fluorescence microscopy combined with computer image analysis (ImageJ software, NIH, USA). IPC movement was photorecorded and shown to be Brownian motion. On latex microspheres, a methodology was developed for measuring a fluorescing particle's two‐dimensional (2D) displacements and its size. In four yeast cells, the 2D displacements and sizes of the IPCs were evaluated. Apparent viscosity values in the vacuoles of the cells, computed by the Einstein–Smoluchowski equation using the obtained data, were found to be 2.16 ± 0.60, 2.52 ± 0.63, 3.32 ± 0.9 and 11.3 ± 1.7 cP. The first three viscosity values correspond to 30–40% glycerol solutions. The viscosity value of 11.3 ± 1.7 cP was supposed to be an overestimation, caused by the peculiarities of the vacuole structure and/or volume in this particular cell. This conclusion was supported by the particular quality of the Brownian motion trajectories set in this cell as compared to the other three cells. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
We have isolated the gene encoding the 16 kDa vacuolar H(+)-ATPase from Schizosaccharomyces pombe. On the basis of RNA splicing signals and amino acid sequence homology with other 16 kDa H(+)-ATPases, the genomic DNA sequence indicated the 16 kDa protein is encoded by five exons. The C-terminal 50 amino acids has more than 90% homology with vacuolar H(+)-ATPases of mammalian cells.  相似文献   

16.
该研究利用啤酒废酵母制备富含谷胱甘肽的酵母抽提物,旨在开发酵母利用的新途径。以啤酒废酵母为原料,经单因素试验和响应面分析法,得到了谷胱甘肽提取的最佳工艺条件:料液比1∶4(g∶mL)、提取温度85 ℃、提取时间20 min、pH 1.86,在此条件下谷胱甘肽的提取率可达到35.06%;最后确定了谷胱甘肽提取液的最佳浓缩温度为50 ℃,最佳浓缩时间为40 min,制备得到的酵母抽提物中谷胱甘肽含量为4.11%,固形物含量达到61.87%。  相似文献   

17.
Cation/proton antiporters play a major role in the control of cytosolic ion concentrations in prokaryotes and eukaryotes organisms. In yeast, we previously demonstrated that Vnx1p is a vacuolar monovalent cation/H+ exchanger showing Na+/H+ and K+/H+ antiporter activity. We have also shown that disruption of VNX1 results in an almost complete abolishment of vacuolar Na+/H+ exchange, but yeast cells overexpressing the complete protein do not show improved salinity tolerance. In this study, we have identified an autoinhibitory N-terminal domain and have engineered a constitutively activated version of Vnx1p, by removing this domain. Contrary to the wild type protein, the activated protein has a pronounced effect on yeast salt tolerance and vacuolar pH. Expression of this truncated VNX1 gene also improves Arabidopsis salt tolerance and increases Na+ and K+ accumulation of salt grown plants thus suggesting a biotechnological potential of activated Vnx1p to improve salt tolerance of crop plants.  相似文献   

18.
We describe a protein expression system in the methylotrophic yeast, Pichia methanolica. Methods for transformation and genetic manipulation of the organism were developed using an ade2 strain and the wild-type ADE2 gene. A vacuolar protease-deficient strain was constructed. Two genes encoding alcohol oxidases were found, yet a single isoform of alcohol oxidase was produced during methanol-fed fermentations. The promoter from this gene was used to drive expression. An integrating plasmid for the cytoplasmic expression of the 65 kDa isoform of human glutamate decarboxylase (human GAD65) was assembled. A strain harboring eight copies of this plasmid expressed enzymatically active human GAD65 at levels approaching 0·5 g/l. Identical amounts were made in Pichia pastoris. The recombinant GAD65 was purified to greater than 90% purity. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
20.
We have isolated a plasmid containing a gene, ATH1, that results in eight- to ten-fold higher acid trehalase activity in yeast cells when present in high copy. The screening procedure was based on overproduction-induced mislocalization of acid trehalase activity; overproduction of vacuolar enzymes that transit through the secretory pathway leads to secretion to the cell surface. A DNA fragment that confers cell surface expression of acid trehalase activity was cloned and sequenced. The deduced amino acid sequence displayed no homology to known proteins, indicating that we have identified a novel gene. A deletion in the genomic copy of the ATH1 gene eliminates vacuolar acid trehalase activity. These results suggest that ATH1 may be the structural gene encoding vacuolar acid trehalase or that the gene product may be an essential regulatory component involved in control of trehalase activity. The sequence has been deposited in the GenBank data library under Accession Number X84156 S. cerevisiae ATH1 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号