首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
文章简单介绍了导热绝缘胶粘剂的导热原理,重点分析了导热绝缘胶粘荆中最主要的两类组分--高分子树脂和导热填料的影响及其最新研究进展,概述了该类胶粘剂在金属基板上的应用情况,并对导热绝缘胶粘剂的发展前景进行了展望.  相似文献   

2.
制备了一种挠性导热绝缘环氧胶,讨论了改性填料添加量对材料综合性能的影响,并探讨了最佳固化条件。随着填料填充量的增加,材料的热导率大幅提高,粘接力、耐折性及介电性能有所下降。通过实验确定了材料在固化温度为170℃,固化时间为60min的条件下能完全固化,剥离强度最佳。在最佳配方及最佳固化工艺下,所得胶片的热导率为2.31 W/m K、介电常数为4.87、介电损耗为0.058,所制挠性覆铜板的剥离强度为2.20 N/mm,挠曲性能优良。所制备的挠性导热绝缘环氧胶综合性能良好,能满足FCCL的生产要求,可解决电子元器件的散热问题。  相似文献   

3.
采用高导热填料球形氧化铝填充环氧胶粘剂,并添加了适量离子捕捉剂有效地控制有害离子的离子迁移,利用该胶粘剂粘接铝箔和铜箔制备成挠性铝基覆铜板。文章中探讨了环氧胶粘剂的热固化温度和时间、球形氧化铝含量对胶膜热导率的影响,通过显微镜测试了导热填料在胶粘剂中的分散均匀性,最后确定最优配方制备出一种综合性能优异的挠性铝基覆铜板。  相似文献   

4.
以二甲基硅油为基础油,通过添加不同粒径和含量的Al、Cu、Ag、AlN、SiC和石墨,制备了单一填料的单组分以及两种填料大小搭配的二元混合导热硅脂,研究了硬脂酸表面处理、填料种类、大小及比例对导热硅脂热导率的影响,得到了以下结果:硬脂酸处理能提高单组份Al、AlN硅脂的导热性能,但不适用于提高含石墨、SiC、Cu的硅脂的性能;填料填充的最佳比例在0.55~0.60之间;以Ag微粒作为第二填料增强Al和AlN为主填料的硅脂时,对导热率的增强效果高于AlN和Cu、Ag/AlN二元混合硅脂热导率5.5W·m-1·K-1。将制备的导热硅脂用于LED散热,结果表明自制导热硅脂实际散热效果优于市购热界面材料。  相似文献   

5.
介绍了导热系数大于3 W/(m·K)高导热环氧模塑料的制备。以低黏度多芳香环(MAR)环氧树脂和MAR酚醛树脂为基体,以偶联剂处理的球形氧化铝做导热填料,磷类做催化剂,经高速混合机混合、双螺杆挤出机挤出,合成高导热环氧模塑料。并研究了不同偶联剂类型对弯曲强度的影响。通过改变填充量至93%,导热系数最高可达5.6 W/(m·K),且有较好的弯曲性能和流动性能。  相似文献   

6.
通过对LED封装结构热模拟分析表明,模拟固晶胶粘贴部分失效的情况下,采用热导率为0.1 W/m·K的普通硅胶封装成的LED芯片最高温度为220.27℃,采用导热填料高热导率硅胶灌封的LED芯片最高温度可降低到122.71℃,大幅降低了芯片的温度.纳米ZnO导热填料高热导率硅胶,其填料颗粒的直径小于25 nm,透光率高,...  相似文献   

7.
本实验首先通过韧性树脂改性环氧,制备了一种覆铜板用胶膜树脂,用该树脂制备的胶膜具有高达2.67N/mm的剥离强度,并且具备较高的柔韧性和耐热性。将高导热无机填料通过复配方式均匀分散到该胶液中,得到了一种高导热胶膜,该胶膜可应用于金属基覆铜板上,并且具有2.45W/M·K热导率,1.05~1.1N/mm剥离强度,同时还具有较好的电气强度,耐热性。  相似文献   

8.
以低熔玻璃粉、金刚石粉及有机载体制备成浆料,丝网印刷在硬铝LY12基材上,烧结后制成导热绝缘层。分析了浆料中的金刚石粉含量对绝缘导热涂层导热参数和与基片附着力的影响,测试分析了浆料的流变性和触变性。结果表明,绝缘导热浆料的最佳配方为:w(有机载体)为18%;w(金刚石粉)为30%;w(低熔玻璃粉)为52%。静止时浆料中形成弱的絮凝,是剪切变稀体,有一定触变性,具有较好的丝网印刷适性。所制备绝缘涂层的热导率最高可达2.47W/(m·K)。  相似文献   

9.
导热绝缘胶的研制和应用方法   总被引:4,自引:0,他引:4  
讨论了导热系数k与材料本身相联系的因素,以树脂、固化剂和导热绝缘填料的选择组合处理上进行了试验,取得了性能优异的导热绝缘的配方,结合具体的器件与散热构件的组合进行了讨论,取得了良好的散热效果,解决了一些问题。  相似文献   

10.
介绍了三种具有较高热导率的碳纳米材料:碳纳米管、纳米石墨片及纳米碳纤维的结构与导热性能,概述了三种碳纳米材料在改善聚合物复合材料导热性能方面的应用,重点分析了碳纳米材料的种类、用量、表面改性方法及复合材料的制备方法对聚合物复合材料热导率的影响,并对含碳纳米材料的导热聚合物复合材料未来的发展方向进行了分析与展望。  相似文献   

11.
用熔融缩聚法以己二酸分别与二乙烯三胺、三乙烯四胺及多乙烯多胺反应,合成了三种新型低粘度、低毒性、室温固化的固化剂PA1、PA2、PA3。讨论了三种固化剂分别固化环氧树脂,其用量对于胶粘剂固化速率、粘接性能及胶液的流动性能的影响,研究出固化剂与环氧树脂的最佳配比。结果显示,在固化速率方面PA1﹥PA2﹥PA3,在粘接性能方面PA2﹥PA1﹥PA3,在胶液的流动性方面,三种固化剂配制的胶粘剂的固含量接近,它们的适用期长、加热能快速固化,用该胶制备的包封膜经过处理后,综合性能较好,可以满足FPC加工生产的使用需要。  相似文献   

12.
文章介绍了几种应用于FCCL中的无卤阻燃剂,并从阻燃机理上进行分析。本公司制备了一种无卤覆盖膜,其胶粘剂配方采用CTBN增韧双酚A型树脂和含磷环氧树脂混合树脂体系,配合添加型阻燃剂OP935和Al(OH)3,固化剂使用DDS和Dicy混合固化体系。经检测表明,该无卤覆盖膜储存期超过3个月,不仅阻燃性可达到UL 94 VTM-0级,而且综合性能优异,能满足应用的要求。  相似文献   

13.
印制电路基板的温变热性能研究   总被引:1,自引:0,他引:1  
应用大功率器件组装的PCB是电子产品电气性能高频化与高速化的实现基础,但是大功率器的局部热集中会降低PCB传输信号的可靠性。以FR4基板、PPE基板与HC基板为研究对象,研究了其温变导热系数、温变热分解性能与温变CTE性能,通过HC基板制作盲孔考察了盲孔的温变耐热性。结果表明了HC基板的温变热性能优于FR4基板与PPE基板,其导热系数随着温升高而稍微变大,100℃时导热系数为0.797 W/m.K,基板的初始热分解温度达到350℃,25℃-300℃热膨胀系数为72.7×10-6/℃,且通过HC基板制作的盲孔具有良好温变耐热性,HC基板适用于高频印制电路板的制作。  相似文献   

14.
灯芯是PCB制程控制的常规控制项目,一般定义铜渗入玻纤的部分为灯芯,通常在金相显微镜明场下观察。但随着产品绝缘可靠性要求越来越高,只能在金相显微镜暗场下观察到的玻纤裂纹(玻纤发亮区域)需引起材料和PCB生产厂商更多的重视,因为其对后续产品的绝缘性能有关键影响。文章通过实验考察了材料、钻孔等因素对玻纤裂纹长度的影响,并分析了其对PCB耐CAF性能的影响。通过修正后的CACLE模型,结合玻纤裂纹长度,推算不同孔壁间距下的耐CAF性能,为后续的相关研究提供了理论依据和试验基础。  相似文献   

15.
使用半固化片(PP)开窗法制作Semi-flex印制电路板时,半固化片开窗的尺寸及品质直接影响压合时树脂向Semi-flex印制板挠性区域的流动情况,进而影响其挠曲性能。本文使用开窗法制作挠性层为L5/L6层的10层Semi-flex印制板,研究了铣刀转速、叠合张数等加工参数对半固化片开窗品质的影响,以及半固化片开窗放大尺寸与压合时刚挠结合处PP溢胶长度的关系。为了验证产品其可靠性,对其进行了漂锡测试、回流焊测试和冷热冲击测试。  相似文献   

16.
随着高频通信技术的不断发展,高频特种印制电路板的需求越来越多。聚四氟乙烯(PTFE)材料以其良好的耐高温耐老化以及低损耗而著称,是目前用量最大的高频特种印制板类型。但由于PTFE材料独特的物理化学性能,导致其机械加工难度大。在钻孔过程中,如果钻孔参数设置不当,极易出现孔壁粗糙、铜瘤等不良问题。本文选用业内常用的PTFE+玻璃布和PTFE+玻璃布+陶瓷填充两种类型的材料,通过正交试验方法,对其钻孔参数进行分别进行分析和研究,从而得出最优的参数组合,有效解决了PTFE材料在钻孔过程中产生的孔壁粗糙、铜瘤等不良问题,为业内同行加工PTFE材料提供参考。  相似文献   

17.
耐高温保护膜在FPC应用领域占有相当重要的地位。文章研究了聚合工艺、交联单体、促进剂和固化剂对压敏胶剥离强度和耐温性能的影响。制备了一种能够耐受180℃高温、90°剥离强度值适中的耐高温压敏胶。此胶可以广泛应用于FPC耐高温保护膜。  相似文献   

18.
高频混压材料阶梯板制作技术是伴随着通讯、电信行业的飞速发展而新兴出来的一种电路板制作技术,它主要用于突破传统模式印制电路板无法企及的数据高速、高信息量传送的瓶颈。目前高频混压材料阶梯板制作技术仅仅是被一些规模较大的线路板厂所掌握,暂时还没有完全为一些中小规模的线路板加工厂所掌握。本文以一款高频混压材料阶梯板制作为例,剖析高频混压材料阶梯板制作过程中如何有效控制阶梯槽位流胶、层偏、翘曲。  相似文献   

19.
本文结合了当前电工技术和电子技术发展的实际,对"电工学"教学方法方面进行了探索和研究,提出了要体现能力目标、知识目标,充分突出课程的实践性强的思路;探讨了多媒体教学为基础,项目教学为载体,点滴激励、实物展示、参观学习教学为辅助的教学方法。以便于学生自身的学习能力和创新能力的培养和提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号