共查询到20条相似文献,搜索用时 62 毫秒
1.
人脸识别技术是一种生物特征识别技术,人脸识别系统把人的脸作为基础,依靠计算机视觉和图像处理的相关技术,研究识别人脸的方法,在图像处理与模式识别中起到重要作用,被广泛应用于军事、经济、刑侦、医疗、安保、考勤等方面.本文采用主成分分析(PCA)、线性判别分析(LDA)联合算法,分析提取出的表达数据的特征,进行人脸识别,并提... 相似文献
2.
传统的基于数据二阶统计矩的主元分析法(PCA)是一种有效的数据特征提取方法,是基于原始特征的一种线性变换。但是,当原始数据中存在非线性属性时,用主元分析法后留下的显著成分就可能不再反映这种非线性属性。而核主元分析则是基于原始数据的高阶统计量,是一种非线性变换,在图像识别中它可以描述多个像素之间的相关性。而KPCA方法只考虑了人脸图像的整体信息,没有考虑到局部特征信息。文章提出了分块核主元分析(MKPCA)的方法进行人脸识别,取得了很好的效果。 相似文献
3.
PCA和KPCA都是基于欧氏距离提出的,这种距离对离群数据点比较敏感,而余弦角距离对离群数据更为鲁棒,在很多情况下具有更好的性能。充分利用余弦角距离的优势,提出两种新的特征抽取算法——基于余弦角距离的主成分分析(PCAC)和基于余弦角距离的核主成分分析(KPCAC)。在YALE人脸数据库与PolyU掌纹数据库上的实验表明,PCAC比PCA取得了更好的效果,KPCAC也表现出了很好的性能。 相似文献
4.
环境质量评价是一个多指标决策过程,考虑到评价指标众多关系复杂,该文运用降维效果显著、能有效解决非线性问题的核主成分分析(KPCA)方法对主成分分析(PCA)综合评价进行改进,建立环境质量综合评价模型。实证研究结果表明该模型能够较客观地反映不同地区的环境状况。 相似文献
5.
利用小波分解提取人脸特征技术和支持向量机 (SVM)分类模型 ,提出了一种基于个人身份认证的正面人脸识别算法 (或称为人脸认证方法 ) .针对 M个用户的人脸认证算法包括二个阶段 :(1)训练阶段 :使用小波分解方法对脸像训练集中的人脸图象进行特征提取 ,并用所提取的人脸特征向量训练 M个 SVM(对应 M个用户 ) ;(2 )认证阶段 :先由待认证者所声称的用户身份 (姓名或密码等 )确定对应的一训练好的 SVM,然后用这一 SVM对小波分解方法提取的待认证人的脸像特征向量进行分类 ,分类结果将显示待认证人所声称的身份是否真实 .利用 ORL人脸图象库对该算法的实验测试结果 ,以及与径向基函数神经网络作为分类器时的实验结果比较表明了该算法性能的优越性 相似文献
6.
针对BP等全局性神经网络收敛速度慢和局部极小的存在,用于人脸表情分类时,不仅实时性难以达到要求,而且识别精度也存在不确定性。为提高速度,加快收敛,提出一种基于局部性CMAC(Cerebellar Model Articulation Controller)神经网络的人脸表情识别方法。先对样本图像进行预处理,提取感兴趣的脸部区域,通过K-L(Karhunen-Loeve)变换对处理后的图像提取眼、嘴和鼻等重要特征点的位置和局部几何形状作为识别特征得到感兴趣的表情区域。最后将待测表情与标准表情的欧氏距离作为CMAC神经网络的输入,表情类型作为网络输出,对人脸7种典型表情进行识别。实验结果表明,基于CMAC的方法能有效地识别人脸表情,而且算法简单,学习速度快,可用于需要实时分析人脸表情的场合。 相似文献
7.
基于核策略的核Fisher鉴别分析(KFD)算法已成为非线性特征抽取的最有效方法之一。但是先前的基于核Fisher鉴别分析算法的特征抽取过程都是基于2值分类问题而言的。如何从重叠(离群)样本中抽取有效的分类特征没有得到有效的解决。本文在结合模糊集理论的基础上,利用模糊隶属度函数的概念,在特征提取过程中融入了样本的分布信息,提出了一种新的核Fisher鉴别分析方法——模糊核鉴别分析算法。在ORL人脸数据库上的实验结果验证了该算法的有效性。 相似文献
8.
尽管基于Fisher准则的线性鉴别分析被公认为特征抽取的有效方法之一,并被成功地用于人脸识别,但是由于光照变化、人脸表情和姿势变化,实际上的人脸图像分布是十分复杂的,因此,抽取非线性鉴别特征显得十分必要。为了能利用非线性鉴别特征进行人脸识别,提出了一种基于核的子空间鉴别分析方法。该方法首先利用核函数技术将原始样本隐式地映射到高维(甚至无穷维)特征空间;然后在高维特征空间里,利用再生核理论来建立基于广义Fisher准则的两个等价模型;最后利用正交补空间方法求得最优鉴别矢量来进行人脸识别。在ORL和NUST603两个人脸数据库上,对该方法进行了鉴别性能实验,得到了识别率分别为94%和99.58%的实验结果,这表明该方法与核组合方法的识别结果相当,且明显优于KPCA和Kernel fisherfaces方法的识别结果。 相似文献
9.
在研究基于支持向量机进行文本分类一般步骤的基础上,针对Key-Substring-Group文本分类算法存在非线性支持向量机对核函数和参数C的强依赖的问题,用欧氏距离代替支持向量机训练得到的分类决策面进行分类决策,对文本分类算法进行改进。通过对比试验,发现分类效果不会随着核函数及参数C的变化而有明显的波动。 相似文献
10.
为提高检索精确度,提出了一种利用核线性分类分析来对模型特征进行优化的新方法。其主要思想是通过满足Mercer条件的非线性映射将低维空间下线性不可分的样本映射到高维空间,在高维空间中利用线性分类分析将原有的三维模型特征投影到特定的子空间。该方法能够在保持类间距离基础上得到具有鉴别信息的低维特征用于三维模型检索。实验结果表明,核线性分类分析方法速度较快,可在秒级完成三维特征优化,同时优化特征在本文测试数据集上可平均提高搜索准确度15%。 相似文献
11.
Feature extraction is among the most important problems in face recognition systems. In this paper, we propose an enhanced kernel discriminant analysis (KDA) algorithm called kernel fractional-step discriminant analysis (KFDA) for nonlinear feature extraction and dimensionality reduction. Not only can this new algorithm, like other kernel methods, deal with nonlinearity required for many face recognition tasks, it can also outperform traditional KDA algorithms in resisting the adverse effects due to outlier classes. Moreover, to further strengthen the overall performance of KDA algorithms for face recognition, we propose two new kernel functions: cosine fractional-power polynomial kernel and non-normal Gaussian RBF kernel. We perform extensive comparative studies based on the YaleB and FERET face databases. Experimental results show that our KFDA algorithm outperforms traditional kernel principal component analysis (KPCA) and KDA algorithms. Moreover, further improvement can be obtained when the two new kernel functions are used. 相似文献
12.
There are two fundamental problems with the Fisher linear discriminant analysis for face recognition. One is the singularity problem of the within-class scatter matrix due to small training sample size. The other is that it cannot efficiently describe complex nonlinear variations of face images because of its linear property. In this letter, a kernel scatter-difference-based discriminant analysis is proposed to overcome these two problems. We first use the nonlinear kernel trick to map the input data into an implicit feature space F. Then a scatter-difference-based discriminant rule is defined to analyze the data in F. The proposed method can not only produce nonlinear discriminant features but also avoid the singularity problem of the within-class scatter matrix. Extensive experiments show encouraging recognition performance of the new algorithm. 相似文献
13.
Techniques that can introduce low-dimensional feature representation with enhanced discriminatory power is of paramount importance in face recognition (FR) systems. It is well known that the distribution of face images, under a perceivable variation in viewpoint, illumination or facial expression, is highly nonlinear and complex. It is, therefore, not surprising that linear techniques, such as those based on principle component analysis (PCA) or linear discriminant analysis (LDA), cannot provide reliable and robust solutions to those FR problems with complex face variations. In this paper, we propose a kernel machine-based discriminant analysis method, which deals with the nonlinearity of the face patterns' distribution. The proposed method also effectively solves the so-called "small sample size" (SSS) problem, which exists in most FR tasks. The new algorithm has been tested, in terms of classification error rate performance, on the multiview UMIST face database. Results indicate that the proposed methodology is able to achieve excellent performance with only a very small set of features being used, and its error rate is approximately 34% and 48% of those of two other commonly used kernel FR approaches, the kernel-PCA (KPCA) and the generalized discriminant analysis (GDA), respectively. 相似文献
14.
As an effective technique for feature extraction and pattern classification Fisher linear discriminant (FLD) has been successfully applied in many fields. However, for a task with very high-dimensional data such as face images,
conventional FLD technique encounters a fundamental difficulty caused by singular within-class scatter matrix. To avoid the
trouble, many improvements on the feature extraction aspect of FLD have been proposed. In contrast, studies on the pattern
classification aspect of FLD are quiet few. In this paper, we will focus our attention on the possible improvement on the
pattern classification aspect of FLD by presenting a novel linear discriminant criterion called maximum scatter difference (MSD). Theoretical analysis demonstrates that MSD criterion is a generalization of Fisher discriminant criterion, and is
the asymptotic form of discriminant criterion: large margin linear projection. The performance of MSD classifier is tested in face recognition. Experiments performed on the ORL, Yale, FERET and AR databases
show that MSD classifier can compete with top-performance linear classifiers such as linear support vector machines, and is better than or equivalent to combinations of well known facial feature extraction methods, such as eigenfaces, Fisherfaces, orthogonal complementary space, nullspace, direct linear discriminant analysis, and the nearest neighbor classifier.
相似文献
15.
This paper proposes a view-invariant gait recognition algorithm, which builds a unique view invariant model taking advantage of the dimensionality reduction provided by the Direct Linear Discriminant Analysis (DLDA). Proposed scheme is able to reduce the under-sampling problem (USP) that appears usually when the number of training samples is much smaller than the dimension of the feature space. Proposed approach uses the Gait Energy Images (GEIs) and DLDA to create a view invariant model that is able to determine with high accuracy the identity of the person under analysis independently of incoming angles. Evaluation results show that the proposed scheme provides a recognition performance quite independent of the view angles and higher accuracy compared with other previously proposed gait recognition methods, in terms of computational complexity and recognition accuracy. 相似文献
16.
为了提取更真实的样本局部分布结构以及合理利用样本标签信息,提出局部Fisher准则判别投影的人脸识别算法。通过求解样本在总体下稀疏表示来自适应选择样本的近邻参数,以使样本间分布关系尽可能符合真实情况;在获取稀疏近邻结构的基础上,利用样本标签信息设计自定义的类内局部散度矩阵和类间局部散度矩阵,以使得在保留样本间近邻关系的同时提高样本标签信息带来的判别能力。该算法可以有效保持同类样本间的稀疏近邻关系,并且破坏非同类样本间的稀疏近邻结构。在Yale库、AR库以及Yale B库上的实验结果表明:与相关的人脸识别算法相比,该算法具有更高的人脸识别率,可以有效提升人脸识别算法的识别率。 相似文献
17.
This paper builds the concept of kernel cuboid, and proposes a new kernel-based image feature extraction method for face recognition. The proposed method deals with a face image in a block-wise manner, and independently performs kernel discriminant analysis in every block set, using kernel cuboid instead of kernel matrix. Experimental results on the ORL and UMIST face databases show the effectiveness and scalability of the proposed method. 相似文献
18.
In the last decades, action recognition task has evolved from single view recording to unconstrained environment. Recently, multi-view action recognition has become a hot topic in computer vision. However, we notice that only a few works have focused on the open-view action recognition, which is a common problem in the real world. Open-view action recognition focus on doing action recognition in unseen view without using any information from it. To address this issue, we firstly introduce a novel multi-view surveillance action dataset and benchmark several state-of-the-art algorithms. From the results, we observe that the performance of the state-of-the-art algorithms would drop a lot under open-view constraints. Then, we propose a novel open-view action recognition method based on the linear discriminant analysis. This method can learn a common space for action samples under different view by using their category information, which can achieve a good result in open-view action recognition. 相似文献
20.
针对零空间线性决策分析方法难以揭示人脸图像空间中数据的非线性结构的问题,提出了一种零空间核决策分析方法,详细介绍了该方法的推导过程及求解步骤。测试结果表明,该方法能够在核空间中提取类内离散度矩阵的零空间,并且最大程度上去除类间离散度矩阵的零空间,新提取的特征能够有效地用来进行人脸识别。 相似文献
|