首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of miscible linear and star poly(methyl methacrylate) (PMMA)/phenolic blends with different compositions have been prepared. Tgs of both systems are negative derivation from the average values, implying that the self-association interaction is stronger than the inter-association interaction between linear or star PMMA with phenolic. The proton spin-lattice relaxation time in the rotating frame (T1ρH) determined by high resolution solid state 13C NMR indicates single composition dependent T1ρH from all blends, implying a good miscibility with chain dynamics on a scale of 1-2 nm. However, T1ρHs of star PMMA/phenolic blends are relatively smaller than those of linear PMMA/phenolic blends, implying that the degree of homogeneity of star PMMA/phenolic blends is higher than those of linear PMMA/phenolic blends. According to FT-IR analyses, the above results can be rationalized that the hydrogen-bonding interaction of the star PMMA/phenolic blends is greater than the corresponding linear PMMA/phenolic blends.  相似文献   

2.
A series of miscible PMMA/PMAA blends and PMMA-co-PMAA copolymers with different compositions were prepared in this study. Tgs of PMMA-co-PMAA copolymers are significantly higher than average values or from the Fox equation. The proton spin-lattice relaxation time in the rotating frame (T1ρH) determined by high resolution solid state 13C nuclear magnetic resonance indicates single composition-dependent from all blends and copolymers, implying a good miscibility with chain dynamics on a scale of 1-2 nm. However, T1ρHs of copolymers are still smaller than those of blends, implying that degrees of homogeneity of copolymers are higher than those of blends. On the basis of Kovacs' free volume theory, the free volume of the copolymer obtained is decreased which is another indication of greater homogeneity of the copolymer than that of the corresponding blend. According to Fourier transform infrared spectroscopy analyses, the above results can be rationalized that the hydrogen bonding interaction of the copolymer is stronger than the blend.  相似文献   

3.
The miscibility and morphology of poly(caprolactone) (PCL) and poly (4-vinylphenol) (PVPh) blends were investigated by using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and 13C solid state nuclear magnetic resonance (NMR) spectroscopy. The DSC results indicate that PCL is miscible with PVPh. FTIR studies reveal that hydrogen bonding exists between the hydroxyl groups of PVPh and the carbonyl groups of PCL. 13C cross polarization (CP)/magic angle spinning (MAS)/dipolar decoupling (DD) spectra of the blends show a 1 ppm downfield shifting of 13C resonance of PVPh hydroxyl-substituted carbons and PCL carbonyl carbons with increasing PCL content. Both FTIR and NMR give evidence of inter-molecular hydrogen bonding within the blends. The proton spin-lattice relaxation in the laboratory frame, T1(H), and in the rotating frame, T(H), were studied as a function of the blend composition. The T1(H) results are in good agreement with thermal analysis; i.e. the blends are completely homogeneous on the scale of 50-80 nm. The T(H) results indicate that PCL in the blends has both crystalline and amorphous phases. The amorphous PCL phase is miscible with PVPh, but the PCL crystal domain size is probably larger than the spin-diffusion path length within the T(H) time-frame, i.e. larger than 2-4 nm. The mobility differences between the crystalline and amorphous phases of PCL are clearly visible from the T(H) data.  相似文献   

4.
Scanning electron microscopy, solid-state proton NMR spectroscopy and static mechanical analysis have been performed in order to evaluate the compatibilising action of random copolymers of polystyrene and polybutadiene and triblock copolymers of poly(styrene-butadiene-styrene) in incompatible polystyrene/polybutadiene (PS/PB) blends. Scanning electron microscopic examination of the cryofractured and etched surfaces showed high degree of compatibilising action of the triblock copolymers as evidenced by the very sharp decrease of the domain size of the dispersed phase followed by an increase at higher concentrations. This is a clear indication of interfacial saturation. These results were in agreement with the theoretical predictions of Noolandi and Hong. The random copolymer was not effective in compatibilising the system. Solid-state proton NMR experiments were performed on the uncompatibilised and compatibilised blends. The proton spin-lattice relaxation times in the laboratory frame, T1(H), and in the rotating frame, T1ρ(H), and spin-spin relaxation times, T2(H), were carefully measured for the systems. Significant changes were observed for the systems compatibilised with triblock copolymers due to the preferential localisation of the copolymers at the PS/PB interface. However, the random copolymer did not have any compositional drift and is not an effective interface modifier in agreement with microscopy study. The static mechanical properties of the blends have also been analysed. The addition of triblock copolymers increased the mechanical properties of the blends. Finally, attempts have been made to correlate the NMR results with the microstructure and mechanical properties of the blends.  相似文献   

5.
Low molecular weight additive effects on the mid-kilohertz mobility of atactic polystyrene (PS) at 25°C via n.m.r. spin-lattice relaxation experiments in the rotating frame (T1?) are analogous to the results of a previous study of diluents in glassy bisphenol-A polycarbonate. The diluent with a relatively low glass transition temperature (Tg), dioctylphthalate, increases the spectral density of thermal motions of the chain backbone and the pendant group in PS on the order of 38.5 kHz. Of the 13C nuclei in the glassy polymer, the relaxation behaviour of which can be differentiated by high-resolution, solid-state n.m.r., the T1?'s of the aromatic carbons in the side group are affected most by dioctylphthalate. In contrast, the styrene oligomer, which has a higher Tg than that of dioctylphthalate, does not significantly alter the ambient temperature mobility of polystyrene at 38.5 kHz. The PS-styrene oligomer and PS-dioctylphthalate blends are examples of athermal and non-athermal mixtures, respectively. However, the effect of the enthalpy of mixing on the T1?'s of the polymer is probably obscured by differences in blend mobility due to different blend Tg's.  相似文献   

6.
The miscibility of phenolic resin and poly(vinyl acetate) (PVAc) blends was investigated by differential scanning calorimeter (DSC), Fourier transform infrared spectroscopy (FT-IR) and solid state 13C nuclear magnetic resonance (NMR). This blend displays single glass transition temperature (Tg) over entire compositions indicating that this blend system is miscible in the amorphous phase due to the formation of hydrogen bonding between hydroxyl groups of phenolic resin and carbonyl groups of PVAc. Quantitative measurements on fraction of hydrogen-bonded carbonyl group using both 13C solid-state NMR and FT-IR analyses result in good agreement between these two spectroscopic techniques. According to the proton spin-lattice relaxation time in the rotating frame (TH), the phenolic/PVAc blend is intimately mixed on a scale less than 2-3 nm. Furthermore, the inter-association equilibrium constant and its related enthalpy of phenolic/PVAc blends were determined as a function of temperatures by infrared spectra based on the Painter-Coleman association model.  相似文献   

7.
P Adriaensens  R Dams  D Vanderzande  J Gelan 《Polymer》2004,45(13):4499-4505
Films of conjugated polymer blends were studied by NMR relaxometry in order to improve the understanding of the nanomorphology and segmental chain mobility. Whereas optical microscopy was applied to obtain a rough impression about the surface morphology, the T1H and T2H NMR relaxation decay times were determined in the solid state (13C-CP/MAS and 1H-wideline NMR) to judge the homogeneity of the phase morphology, to estimate the size of phase separated molecular domains and to compare the local segmental chain mobility. Besides blend composition, important parameters investigated are the film processing technique (dropcasting vs. spincoating), the casting solvent and the casting substrate.  相似文献   

8.
Within small molecules, the hydrogen-bonding behaviors affected by delocalization have been studied thoroughly, but rare publication in macromolecules. Therefore, three poly(N-phenyl methacrylamide)s, poly(N-phenyl methacrylamide) (PNPAA), poly(N-4-methoxyphenyl methacrylamide) (PMPMA) and poly(N-4-bromophenyl methacrylamide) (PBPMA), with different inductive substitution at para position of benzene ring are prepared to investigate the substituent-induced delocalization effects on the hydrogen-bonding interaction behaviors. In this study, the variable-temperature FTIR spectrum is used as tool to study the self- and inter-association hydrogen-bonding interaction. FTIR analyses could provide evidences that there is relatively stronger inter-associative hydrogen bonding in poly(N-4-bromophenyl methacrylamide)/P4VP blends. High resolution 13C CP/MAS solid-state NMR analyses indicate that the spin-lattice relaxation time (T1ρH) in all PBPMA blends are homogeneous on the scale at which spin-diffusion occurs within the time T1ρH, also due to the enhancement by substituent inductive delocalization.  相似文献   

9.
J.Z YiS.H Goh 《Polymer》2002,43(16):4515-4522
Poly(p-vinylphenol) (PVPh) and poly(N-acryloylmorpholine) (PAcM) form interpolymer complexes in ethanol/water (1:1) solution. However, only ordinary blends are obtained from dimethylformamide solution. Each of the complexes and ordinary blends shows one composition-dependent glass transition temperature, indicating its single-phase nature. Fourier transform infrared spectroscopy and 13C solid-state nuclear magnetic resonance spectroscopy reveal the existence of hydrogen-bonding interactions between the hydroxyl groups of PVPh and the carbonyl groups as well as the ether oxygen of PAcM in the blends and complexes. In addition, X-ray photoelectron spectroscopy shows that the nitrogen atoms in PAcM are also involved in hydrogen-bonding interactions. Measurements of proton spin-lattice relaxation time in the rotating frame, T1ρ(H), reveal that each of the complexes and ordinary miscible blends has one composition-dependent T1ρ(H), indicating an intimate mixing on a scale of about 1.5 nm. The blends show a higher degree of surface enrichment of PVPh than the complexes.  相似文献   

10.
TH′ the proton spin-lattice relaxation time in the rotating frame, can be used as a probe for polymer blend miscibility in the same way the glass transition temperature (Tg) is used. TH has some advantages over Tg. It is indicative of the separate phases at a level of a few nanometers, below what Tg can distinguish. Also, TH is the only parameter related to the local proton density in a sample. This paper shows a few examples of TH investigations, including thermally reversible blends, phase separated composites, and mixtures of polymers with small molecules.  相似文献   

11.
Vivek Thirtha  Thomas Nosker 《Polymer》2006,47(15):5392-5401
The effects uncompatibilized immiscible polymer blend compositions on the Tg of the amorphous polymer were studied in the systems polystyrene/polypropylene (PS/PP), polystyrene/high density polyethylene (PS/PE) and polycarbonate/high density polyethylene (PC/PE). In the two similar systems of PS/PP and PS/PE, the Tg of PS increased with decreasing PS percentage in the blends. This variation in glass transition is attributed to the polymer domain interactions resulting from the different morphologies of various blend compositions. Experiments were conducted to study these effects by preparing blends with various polymers that varied the relationship between the Tg of the amorphous polymer and the crystallization behavior of the semicrystalline polymer. Results show that the variation in amorphous component Tg with composition depends strongly on the physical state of the semicrystalline domains. Whereas the Tg of PS in PS/PE blends changed with composition, the Tg of PC in the PC/PE blend did not change with composition.  相似文献   

12.
P. Adriaensens 《Polymer》2005,46(6):1759-1765
A sensitive protocol to judge the completeness of the elimination reaction for soluble and insoluble conjugated polymers prepared via precursor routes is presented based on UV/vis and 1H wideline NMR relaxometry in the solid state. Especially the proton spin-lattice decay time in the rotating frame, T1ρH, has proven to be suitable for an accurate determination of the completeness of the elimination reaction. Especially for long side-chain substituted PPV derivatives, UV/vis seems to be limited due to thermochromic effects. Furthermore, it is shown by solid state 2H wideline NMR spectroscopy that incomplete elimination results in an enhanced polymer backbone chain mobility. Both the completeness of elimination and insight into the molecular dynamics can be of significant importance toward the performance of photovoltaic devices.  相似文献   

13.
Novel solid copper(II) complexes were obtained from the polyampholyte poly(EGDE-MAA-IM) and the polyelectrolyte poly(EGDE-MAA) polymers with copper salts at different concentration levels.The materials were characterized employing solid-state Nuclear Magnetic Resonance (NMR), Fourier Transform infrared (FTIR), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and thermogravimetry (TG).The reticulation induced by MAA in these materials against the poly(EGDE-IM) gel was analyzed by DSC. The coordination behavior of the carboxylic acid of MAA, compared to that provided by the imidazole ring, was studied through solid-state 13C NMR and changes in the FTIR spectra. The non-homogenous character of the doped and undoped materials was analyzed by the glass transition temperature (Tg), 2D 1H-13C WISE NMR and proton spin-lattice relaxation time in the rotating frame (TH). In particular, the TH and TH1 values in the complexes decreased with the Cu(II) concentration, showing the high sensitivity of both parameters to the presence of a paramagnetic ion. Finally, the thermogravimetric studies indicated that the presence of the imidazole ring was decisive for the stability of the Cu(II) complexes and for the undoped polymers.  相似文献   

14.
《国际聚合物材料杂志》2012,61(3-4):695-700
Abstract

The effect of addition of poly (propylene oxide) (PPO) and polystyrene with low molecular weight (LPS) to polystyrene (PS) was investigated blending these polymers in a Haake internal mixer. The PPO and LPS range was established up to 10% by weight. The blends were analysed by differential scanning calorimetry (DSC) and carbon-13 nuclear magnetic resonance spectroscopy at solid state (NMR), using conventional NMR techniques as cross-polarisation/magic angle spinning (CP/MAS) and proton spin-lattice relaxation time in the rotating frame (T 1 H p ). The addition of 1 and 5% of PPO and 5% of LPS to PS made the blends of PS/PPO and PS/LPS more rigid.  相似文献   

15.
Abstract

Organosolv lignin (OSL) esters (side-chain carbon number, n = 3, 4, and 5) have been demonstrated to be miscible with poly(?-caprolactone) (PCL) on a scale (20–30 nm) for detecting glass transition temperature (T g) by differential scanning calorimetry (Polym. J. 2009, 41(3), 219–227). Further precise quantification of homogeneity was conducted for the OSL propionate (OSL-Pr, n = 3)/PCL and OSL butyrate (OSL-Bu, n = 4)/PCL blends by means of dynamic mechanical analysis (DMA) and solid-state nuclear magnetic resonance (NMR). DMA revealed a composition-dependent T g for these blend samples, which implies the attainment of an intimate mixing of the ingredients on a scale of ≤15 nm. From the measurements of proton spin-lattice relaxation times (T H) using solid-state NMR, the blends were estimated to be substantially homogeneous on a scale of ~6 nm. But the equalization of the T H for the components of OSL-Pr/PCL was not remarkable; that is, the constituents of OSL-Pr/PCL were relatively imperfectly miscible with each other.  相似文献   

16.
The phase structure of poly‐(R)‐(3‐hydroxybutyrate) (PHB)/chitosan and poly‐(R)‐(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (P(HB‐co‐HV))/chitosan blends were studied with 1H CRAMPS (combined rotation and multiple pulse spectroscopy). 1H T1 was measured with a modified BR24 sequence that yielded an intensity decay to zero mode rather than the traditional inversion‐recovery mode. 1H T was measured with a 40‐kHz spin‐lock pulse inserted between the initial 90° pulse and the BR24 pulse train. The chemical shift scale is referenced to the methyl group of PHB as 1.27 ppm relative to tetramethylsilane (TMS) based on 1H liquid NMR of PHB. Single exponential T1 decay is observed for the β‐hydrogen of PHB or P(HB‐co‐HV) at 5.4 ppm and for the chitosan at 3.7 ppm. T1 values of the blends are either faster than or intermediate to those of the plain polymers. The T decay of β‐hydrogen is bi‐exponential. The slow T decay component is interpreted as the crystalline phase of PHB or P(HB‐co‐HV). The degree of crystallinity decreases with increasing wt % of chitosan in the blend. The fast T of β‐hydrogen and the T of chitosan in the blends either follow the same trend as or faster than the weight‐averaged values based on the T of the plain polymers. Together with the observation by differential scanning calorimeter (DSC) of a melting point depression and one effective glass transition temperature in the blends, the experimental evidence strongly suggests that chitosan is miscible with either PHB or P(HB‐co‐HV) at all compositions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1253–1258, 2002  相似文献   

17.
Miscibility and phase behavior in the blends of phenolphthalein poly(ether sulfone) (PES-C) with poly(hydroxyether of bisphenol A) (PH) were investigated by means of differential scanning calorimetry (DSC), high resolution solid state nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR). It was found that the homogeneity of the as-prepared blends depended on the solvents used; N,N-dimethylformamide (DMF) provided the segmental mixing for PH and PES-C, which is confirmed by the behavior of single, composition-dependent glass transition temperatures (Tg's). To examine the homogeneity of the blends at the molecular level, the proton spin-lattice relaxation times in the rotating frame T1ρ(H) were measured via 13C CP/MAS NMR spectroscopy as a function of blend composition. In view of the T1ρ(H) values, it is concluded that the PH and PES-C chains are intimately mixed on the scale of 20-30 Å. FTIR studies indicate that there were the intermolecular specific interactions in this blends, involved with the hydrogen-bonding between the hydroxyls of PH and the carbonyls of PES-C, and the strength of the intermolecular hydrogen bonding is weaker than that of PH self-association. At higher temperature, the PH/PES-C blends underwent phase separation. By means of thermal analysis, the phase boundaries of the blends were determined, and the system displayed the lower critical solution temperature behavior. Thermogravity analysis (TGA) showed that the blends exhibited the improved thermal stability, which increases with increasing PES-C content.  相似文献   

18.
Blends of bisphenol-A polycarbonate (PC) and polystyrene (PS) prepared by screw extrusion and solution casting have been investigated with weight fractions of PC in the blends varying from 0.95 to 0.05. From the measured glass transition temperatures (Tg) and specific heat increments (ΔCp) at the Tg, the polystyrene appears to dissolve more in the PC phase than does the PC in the PS phase. The blend appears to be near eqilibrium under extrusion conditions so that the polymer–polymer interaction parameter of PC/PS blends was calculated and found to be 0.038±0.004 for extruded blends at 250°C. Scanning electron microscopy supports the conclusion that the compatibility increases more in the region of PS-rich compositions than in the regions of PC-rich compositions of the PC/PS blends.  相似文献   

19.
Bioblends of the biodegradable copolyester poly(tetramethyleneadipate‐co‐terephthalate) (EBU) and polystyrene (PS) were prepared in different weight compositions on a twin‐screw extruder at 160–200°C. The various bioblend compositions were then investigated using thermogravimetric analysis (TGA), modulated differential scanning calorimetry (MDSC), and Fourier transform infrared photoacoustic spectroscopy (FTIR‐PAS). TGA studies showed that 25/75 and 50/50 EBU/PS blends had higher thermal stability than the more thermally stable blend component, PS. The MDSC studies showed a single Tg and single Tm for the blends, that were concentration independent. The FTIR‐PAS studies indicated a small shift (4–8 cm?1) in the carbonyl absorption peaks of EBU to lower wavenumbers in 50/50 EBU/PS blend relative to that of neat EBU. It is concluded that, while the MDSC results were inconclusive, the TGA and FTIR‐PAS results support the existence of some degree of intermolecular interaction between EBU and PS components and, hence, partial compatibility in EBU/PS blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
We have synthesized a series of block copolymers of poly(2,6-dimethyl-1,4-phenylene oxide) and polystyrene (PPO-b-PS copolymer) by atom transfer radical polymerization. The PS content in these copolymer systems was determined by using infrared spectroscopy, thermal gravimetric analysis, and solution and solid-state NMR spectroscopy; good correlations exist between these characterization methods. DSC analyses indicated that the PPO-b-PS copolymers have higher glass transition temperatures than do their corresponding PPO/PS blends. Our FTIR and solid-state NMR spectroscopic analyses suggest that the PPO-b-PS copolymers possess stronger specific interactions that are responsible for the observed relatively higher values of Tg. We found one single dynamic relaxation from the dynamic mechanical analysis, which implies dynamic homogeneity exists in the PPO-b-PS copolymer; this result is consistent with the one single proton spin-lattice relaxation time observed in the rotating frame [T1ρ(H)] during solid state NMR spectroscopic analysis. In addition, the 2D FTIR spectroscopy reveals evidence for the stronger interactions between segments of PPO and PS through the formation of π-cation complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号