首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The miscibility of phenolic resin and poly(vinyl acetate) (PVAc) blends was investigated by differential scanning calorimeter (DSC), Fourier transform infrared spectroscopy (FT-IR) and solid state 13C nuclear magnetic resonance (NMR). This blend displays single glass transition temperature (Tg) over entire compositions indicating that this blend system is miscible in the amorphous phase due to the formation of hydrogen bonding between hydroxyl groups of phenolic resin and carbonyl groups of PVAc. Quantitative measurements on fraction of hydrogen-bonded carbonyl group using both 13C solid-state NMR and FT-IR analyses result in good agreement between these two spectroscopic techniques. According to the proton spin-lattice relaxation time in the rotating frame (TH), the phenolic/PVAc blend is intimately mixed on a scale less than 2-3 nm. Furthermore, the inter-association equilibrium constant and its related enthalpy of phenolic/PVAc blends were determined as a function of temperatures by infrared spectra based on the Painter-Coleman association model.  相似文献   

2.
Chlorinated poly(vinyl chloride) (CPVC) was solution blended with poly(caprolactone) (PCL), poly(hexamethylene sebacate) (PHMS), poly(α-methyl-α-n-propyl-β-propiolactone) (PMPPL), poly(valerolactone) (PVL), poly(ethylene adipate), poly(ethylene succinate) and poly(β-propiolactone). From calorimetric glass transition temperature (Tg) measurements, it is concluded that CPVC is miscible with polyesters having a CH2/COO ratio larger than three (PCL, PHMS, PMPPL and PVL). The Gordon-Taylor k parameter was also calculated and found equal to 1.0 and 0.56 for PCL/CPVC and PHMS/CPVC blends, respectively. From these values, it is concluded that CPVC gives a stronger interaction with polyesters than poly(vinyl chloride) due to its larger chlorine content.  相似文献   

3.
Poly(acrylic acid) (PAA) and poly(vinyl pyrrolidone) (PVP) were chosen to prepare polymer complex and blends. The complex was prepared from ethanol solution and the blends were prepared from 1-methyl-2-pyrrolidone solution. DSC results show that the Tgs of the PAA/PVP blends lie between those of the two constituent polymers, whereas Tg of the PAA/PVP complex is higher than both blends and the two constituent polymers. TGA results show that degradation temperature, Td, of PAA increases upon adding PVP in the blend, but thermal stability of the complex is higher than that of the blends as reflected by the higher Td. Both FTIR and high-resolution solid state NMR show strong hydrogen bonding between PAA and PVP by showing significant chemical shift. The T(H) measurement shows that the homogeneity scale for the blend is at ∼20 Å and that for the complex is ∼15 Å.  相似文献   

4.
Blends of poly[3,3-bis(chloromethyl)oxetane] (Penton) with poly(vinyl acetate) were prepared. Compatibility, morphology, thermal behavior, and mechanical properties of blends with various compositions were studied using differential scanning calorimetry (DSC), dynamic mechanical measurements (DMA), tensile tests, and scanning electron microscopy (SEM). DMA study showed that the blends have two glass transition temperatures (Tg). The Tg of the PVAc rich phase shifts significantly to lower temperatures with increasing Penton content, suggesting that a considerable amount of Penton dissolves in the PVAc rich phase, but that the Penton rich phase contains little PVAc. The Penton/PVAc blends are partially compatible. DSC results suggest that PVAc can act as a β-nucleator for Penton in the blend. Marked negative deviations from simple additivity were observed for the tensile strength at break over the entire composition range. The Young's modulus curve appeared to be S-shaped, implying that the blends are heterogeneous and have a two-phase structure. This was confirmed by SEM observations. © 1992 John Wiley & Sons, Inc.  相似文献   

5.
The miscibility behavior and hydrogen bonding of ternary blends of bisphenol A (BPA)/poly(vinyl acetate) (PVAc)/poly(vinyl pyrrolidone) (PVP) were investigated by using differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). The BPA is miscible with both PVAc and PVP based on the observed single Tg over the entire composition range. FTIR was used to study the hydrogen-bonding interaction between the hydroxyl group of BPA and the carbonyl group of PVAc and PVP at various compositions. Furthermore, the addition of BPA is able to enhance the miscibility of the immiscible PVAc/PVP binary blend and eventually transforms into miscible blend with single Tg, when a sufficiently quantity of the BPA is present due to the significant Δχ and the ΔK effect.  相似文献   

6.
Miscibility and phase behavior in the blends of phenolphthalein poly(ether sulfone) (PES-C) with poly(hydroxyether of bisphenol A) (PH) were investigated by means of differential scanning calorimetry (DSC), high resolution solid state nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR). It was found that the homogeneity of the as-prepared blends depended on the solvents used; N,N-dimethylformamide (DMF) provided the segmental mixing for PH and PES-C, which is confirmed by the behavior of single, composition-dependent glass transition temperatures (Tg's). To examine the homogeneity of the blends at the molecular level, the proton spin-lattice relaxation times in the rotating frame T1ρ(H) were measured via 13C CP/MAS NMR spectroscopy as a function of blend composition. In view of the T1ρ(H) values, it is concluded that the PH and PES-C chains are intimately mixed on the scale of 20-30 Å. FTIR studies indicate that there were the intermolecular specific interactions in this blends, involved with the hydrogen-bonding between the hydroxyls of PH and the carbonyls of PES-C, and the strength of the intermolecular hydrogen bonding is weaker than that of PH self-association. At higher temperature, the PH/PES-C blends underwent phase separation. By means of thermal analysis, the phase boundaries of the blends were determined, and the system displayed the lower critical solution temperature behavior. Thermogravity analysis (TGA) showed that the blends exhibited the improved thermal stability, which increases with increasing PES-C content.  相似文献   

7.
Yumiko Otomo  Nobukatsu Nemoto 《Polymer》2005,46(23):9714-9724
Novel poly(tetramethylsilnaphthylenesiloxane) derivatives were synthesized and characterized by differential scanning calorimetry (DSC), thermogravimetry (TG), and X-ray diffraction analyses. Poly(tetramethylsilnaphthylenesiloxane) derivatives were obtained by condensation polymerization of the corresponding disilanol derivatives, i.e. 1,4-, 1,5-, 2,6-, and 2,7-bis(dimethylhydroxysilyl)naphthalenes, which were prepared by the Grignard reaction using chlorodimethylsilane and the corresponding dibromonaphthalene derivatives followed by the hydrolyses, catalyzed by palladium on charcoal. The obtained poly(tetramethyl-1,5-silnaphthylenesiloxane) was insoluble in common organic solvents; however, the other polymers exhibited the good solubility in common organic solvents, such as tetrahydrofuran (THF), chloroform, dichloromethane, and toluene. The introduction of tetramethyl-1,5-silnaphthylenesiloxane units into the resulting polymer was confirmed by 1H NMR spectrum of the copolymer obtained by condensation copolymerization of 1,5-bis(dimethylhydroxysilyl)naphthalene with 1,4-bis(dimethylhydroxysilyl)naphthalene. It was revealed from the DSC and X-ray diffraction measurements that poly(tetramethyl-1,5-silnaphthylenesiloxane) and poly(tetramethyl-2,6-silnaphthylenesiloxane) exhibited the crystallinity; however, poly(tetramethyl-1,4-silnaphthylenesiloxane) and poly(tetramethyl-2,7-silnaphthylenesiloxane) were amorphous. The glass transition temperature (Tg) and the temperature at 5% weight loss (Td5) of poly(tetramethylsilnaphthylenesiloxane) derivatives with dimethylsilyl group at 1-position of the naphthylene moiety were higher than those at 2-position of the naphthylene moiety. The Tg and melting point (Tm) of the present polymers were higher than those of poly(tetramethyl-1,4-silphenylenesiloxane).  相似文献   

8.
Biodegradable polymer blends prepared by blending poly(3‐hydroxybutyrate) (PHB) and corn starch do not form intact films due to their incompatibility and brittle behavior. For improving their compatibility and flexibility, poly(vinyl acetate) (PVAc) was grafted from the corn starch to prepare the PVAc‐modified corn starch (CSV). The resulting CSV consisted of 47.2 wt% starch‐g‐PVAc copolymer and 52.8 wt% PVAc homopolymer and its structure was verified by FT‐IR analysis. In comparison with 35°C of the neat PVAc, the glass transition temperature (Tg) of the grafted PVAc chains on starch‐g‐PVAc was higher at 44°C because of the hindered molecular mobility imposed from starch on the grafted PVAc. After blending PHB with the CSV, structure and thermal properties of the blends were investigated. Only a single Tg was found for all the PHB/CSV blends and increased with increasing the CSV content. The Tg‐composition dependence of the PHB/CSV blends was well‐fitted with the Gordon‐Taylor equation, indicating that the CSV was compatible with the PHB. In addition, the presence of the CSV could raise the thermal stability of the PHB component. It was also found that the presence of the PHB and PVAc components would not hinder the enzymatic degradation of the corn starch by α‐amylase. POLYM. ENG. SCI., 55:1321–1329, 2015. © 2015 Society of Plastics Engineers  相似文献   

9.
The miscibility and crystallization behavior of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (P(HB‐co‐HV))/poly(vinyl acetate) (PVAc) blends have been investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that P(HB‐co‐HV)/PVAc blends were miscible in the melt over the whole compositions. Thus the blend exhibited a single glass transition temperature (Tg), which increased with increasing PVAc composition. The spherulitic morphologies of P(HB‐co‐HV)/PVAc blends indicated that the PVAc was predominantly segregated into P(HB‐co‐HV) interlamellar or interfibrillar regions during P(HB‐co‐HV) crystallization because of the volume‐filled spherulites. As to the crystallization kinetics study, it was found that the overall crystallization and crystal growth rates decreased with the addition of PVAc. The kinetics retardation was primarily attributed to the reduction of chain mobility and dilution of P(HB‐co‐HV) upon mixing with higher Tg PVAc. The overall crystallization rate was predominantly governed by the spherulitic growth rate and promoted by the samples treated with the quenched state because of the higher nucleation density. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 980–988, 2006  相似文献   

10.
Han Lü  Guohua Tian 《Polymer》2004,45(9):2897-2909
Poly(hydroxyether sulfone) (PHES) was synthesized through polycondensation of bisphenol S with epichlorohydrin. It was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy and differential scanning calorimetry (DSC). The miscibility in the blends of PHES with poly(ethylene oxide) (PEO) was established on the basis of the thermal analysis results. DSC showed that the PHES/PEO blends prepared by casting from N,N-dimethylformamide (DMF) possessed single, composition-dependent glass transition temperatures (Tgs), indicating that the blends are miscible in amorphous state. At elevated temperatures, the PHES/PEO blends underwent phase separation. The phase behavior was investigated by optical microscope and the cloud point curve was determined. A typical lower critical solution temperature behavior was observed in the moderate temperature range for this blend system. FTIR studies indicate that there are the competitive hydrogen bonding interactions upon adding PEO to the system, which was involved with the intramolecular and intermolecular hydrogen bonding interactions, i.e. -OH?OS, -OH?-OH and -OH versus ether oxygen atoms of PEO between PHES and PEO. In terms of the infrared spectroscopic investigation, it is judged that from weak to strong the strength of the hydrogen bonding interactions is in the following order: -OH?OS, -OH?-OH and -OH versus ether oxygen atoms of PEO.  相似文献   

11.
Sixun Zheng  Yongli Mi 《Polymer》2003,44(4):1067-1074
The blends of poly(hydroxyether of bisphenol A) (phenoxy) with poly(4-vinyl pyridine) (P4VPy) were investigated by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and high-resolution solid-state nuclear magnetic resonance (NMR) spectroscopy. The single, composition-dependent glass transition temperature (Tg) was observed for each blend, indicating that the system is completely miscible. The sigmoid Tg-composition relationship is characteristic of the presence of the strong intermolecular specific interactions in the blend system. FTIR studies revealed that there was intermolecular hydrogen bonding in the blends and the intermolecular hydrogen bonding between the pendant hydroxyl groups of phenoxy and nitrogen atoms of pyridine ring is much stronger than that of self-association in phenoxy. To examine the miscibility of the system at the molecular level, the high resolution 13C cross-polarization (CP)/magic angle spinning (MAS) together with the high-power dipolar decoupling (DD) NMR technique was employed. Upon adding P4VPy to the system, the chemical shift of the hydroxyl-substituted methylene carbon resonance of phenoxy was observed to shift downfield in the 13C CP/MAS spectra. The proton spin-lattice relaxation time T1(H) and the proton spin-lattice relaxation time in the rotating frame T(H) were measured as a function of the blend composition. In light of the proton spin-lattice relaxation parameters, it is concluded that the phenoxy and P4VPy chains are intimately mixed on the scale of 20-30 Å.  相似文献   

12.
Hsiu-Jung Chiu 《Polymer》2005,46(11):3906-3913
Segregation morphology of poly(3-hydroxybutyrate) (PHB)/poly(vinyl acetate) (PVAc) and poly(3-hydroxybutyrate-co-10% 3-hydroxyvalerate) (P(HB-co-10% HV)/PVAc blends crystallized at 70 °C have been investigated by means of small angle X-ray scattering (SAXS). Morphological parameters including the crystal thickness (lc) and the amorphous layer thickness (la) were deduced from the one-dimensional correlation function (γ(z)). Blending with PVAc thickened the PHB crystals but not the P(HB-co-10% HV) crystals. On the basis of the composition variation of la, and the volume fraction of lamellar stacks (?s) revealed that PHB/PVAc blends created the interlamellar segregation morphology when the weight fraction of PVAc (wPVAc)≤0.2 and the interlamellar and interfibrillar segregation coexisted when wPVAc>0.2, while P(HB-co-10% HV)/PVAc blends yielded the interfibrillar segregation morphology at all blend compositions. For both PHB/PVAc and P(HB-co-10% HV)/PVAc blends, the distance of PVAc segregation was promoted by increasing PVAc composition and the distance of PVAc segregation in P(HB-co-10% HV)/PVAc blends was greater than in PHB/PVAc at a given PVAc composition. The crystal growth rate played a key role in controlling the segregation of PVAc.  相似文献   

13.
Epoxy based on diglycidyl ether of bisphenol A + 4,4′diaminodiphenylsulfone blended with poly(vinyl acetate) (PVAc) was investigated through differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and environmental scanning electron microscopy (ESEM). The influence of PVAc content on reaction induced phase separation, cure kinetics, morphology and dynamic‐mechanical properties of cured blends at 180°C is reported. Epoxy/PVAc blends (5, 10 and 15 wt % of PVAc content) are initially miscible but phase separate upon curing. DMTA α‐relaxations of cured blends agree with Tg results by DSC. The conversion‐time data revealed the cure reaction was slower in the blends than in the neat system, although the autocatalytic cure mechanism was not affected by the addition of PVAc. ESEM showed the cured epoxy/PVAc blends had different morphologies as a function of PVAc content: an inversion in morphology took place for blends containing 15 wt % PVAc. The changes in the blend morphology with PVAc content had a clear effect on the DMTA behavior. Inverted morphology blends had low storage modulus values and a high capability to dissipate energy at temperatures higher than the PVAc glass‐transition temperature, in contrast to the behavior of neat epoxy and blends with a low PVAc content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1507–1516, 2007  相似文献   

14.
The effect of thermal history on the orientation and relaxation behavior of blends of polystyrene with poly(vinyl methyl ether) (PS/PVME) has been studied using polarization modulation infrared linear dichroism (PM-IRLD) and differential scanning calorimetry (DSC). DSC shows that miscible PS/PVME blends containing 70% of PS can be physically aged at temperatures above their mean glass transition temperature (Tg). PM-IRLD measurements reveal that both components become more oriented upon stretching at 51 °C (8 °C above Tg) if the sample is aged at the deformation temperature prior to stretching. Room-temperature aging can also lead to an increased orientation if the heating time at 51 °C is kept short. Moreover, PS and PVME develop a larger orientation in phase-separated blends than in miscible ones, and their relaxation is hindered. The results have been interpreted considering the morphology of the samples, including the presence of concentration fluctuations in miscible blends, and the effect of the local environment on the rigidity of the chains.  相似文献   

15.
Spherulitic morphology and crystallization kinetics of the blends of poly(vinylidene fluoride) (PVDF) and poly(vinyl acetate) (PVAc) prepared by solution casting films have been investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The results suggested that PVAc was mainly segregated into the interlamellar and/or interfibrillar regions due to the volume-filling spherulitic morphology observed. As for the results of crystallization kinetics, it was found that both the PVDF spherulitic growth rate (G PVDF) and the overall crystallization rate constant (k n ) were depressed with either the addition of PVAc component or the increase of crystallization temperature (T c). The kinetics retardation was attributed to the decrease in PVDF molecular mobility and dilution of PVDF concentration due to the addition of PVAc, which has a higher glass transition temperature (T g).  相似文献   

16.
E. Piorkowska  R. Masirek 《Polymer》2006,47(20):7178-7188
Plasticization of semicrystalline poly(l-lactide) (PLA) with a new plasticizer - poly(propylene glycol) (PPG) is described. PLA was plasticized with PPG with nominal Mw of 425 g/mol (PPG4) and 1000 g/mol (PPG1) and crystallized. The plasticization decreased Tg, which was reflected in a lower yield stress and improved elongation at break. The crystallization in the blends was accompanied by a phase separation facilitated by an increase of plasticizer concentration in the amorphous phase and by annealing of blends at crystallization temperature. The ultimate properties of the blends with high plasticizer contents correlated with the acceleration of spherulite growth rate that reflected accumulation of plasticizer in front of growing spherulites causing weakness of interspherulitic boundaries. In PLA/PPG1 blends the phase separation was the most intense leading to the formation of PPG1 droplets, which facilitated plastic deformation of the blends that enabled to achieve the elongation at break of about 90-100% for 10 and 12.5 wt% PPG1 content in spite of relatively high Tg of PLA rich phase of the respective blends, 46.1-47.6 °C. Poly(ethylene glycol) (PEG), long known as a plasticizer for PLA, with nominal Mw of 600 g/mol, was also used to plasticize PLA for comparison.  相似文献   

17.
A. Eshuis  E. Roerdink  G. Challa 《Polymer》1982,23(5):735-739
Multiple melting phenomena have been studied in blends of poly(vinylidene fluoride) (PVF2) with low molar mass isotactic poly(ethyl methacrylate) (it-PEMA). In all blends, as well as in pure PVF2, a transition (T1) was observed prior to the main melting point (T2). T1 is probably connected with the melting of secondarily-crystallized material. In addition to this, a high temperature melting endotherm (T3) was observed, which could be ascribed completely to recrystallization of PVF2. The highest transition (T4) was caused by melting of the σ form of PVF2. From Hoffman-Weeks plots—T2 vs. crystallization temperature, Tc — it could be concluded that no thermody amic depression of the melting point of PVF2 occurred in the blends. The stabilities of PVF2 crystallites in the various blends were derived from the slopes of Hoffman-Weeks plots and were in good agreement with lamellar thicknesses found from SAXS measurements.  相似文献   

18.
Five kinds of polyepichlorohydrin (PECH) of different molecular weights were synthesized and characterized by gel permeation chromatography (GPC). Mechanical blending was used to mix PECH and poly(vinyl chloride) (PVC) together. The blends of different PVC/PECH ratios were characterized by thermogravimetric analysis (TGA), tensile tests, differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). TGA results show the thermal stability of PVC/PECH blends is desirable. Tensile tests indicate elongation at break is raised by increasing both the amount and the molecular weight of PECH. DSC is used to determine the glass transition temperature of PECH, and a quite low Tg is obtained. DMA results indicate that PECH has a perfect compatibility with PVC, when PECH concentration is below 20 wt %. There is only one peak in each tan δ curve, and the corresponding Tg decreases as PECH amount increases. However, above 20 wt %, phase separation takes place. The molecular weight of PECH also has a great influence on the glass transition temperature of the blends. This study shows that PECH is an excellent plasticizer for PVC, and one can tailor the glass transition temperature and tensile properties by changing the amount and the molecular weight of PECH. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
The miscibility and interactions of binary blends of poly(4-hydroxystyrene) brominated (P4HSBR) with poly(?-caprolactone) (PCL), poly(vinyl acetate) (PVA) and poly(vinyl methylether) (PVME) are investigated by means of differential scanning calorimetry (DSC). Glass transition temperatures, Tgs, are used to assess the miscibility of these systems. All of them were found to be miscible over the whole composition range. Tgs of the blends are lower than Fox predictions, in contrast to the results previously obtained for systems involving poly(4-hydroxystyrene) (P4HS). The melting of PCL in the blends was studied. From the melting temperature depression of PCL in the blends the polymer-polymer interaction parameter was obtained and compared with the ones obtained for P4HS/PCL and poly(4-hydroxystyrene-co-methoxystyrene) (P4HSM)/PCL systems. The best interactions are achieved in P4HS/PCL and the bromination or methoxylation of the P4HS worsen the interactions with the PCL. The presence of a cusp in the Tg-composition curve was analysed in terms of the Kovacs' theory in systems with P4HS and P4HSBR.  相似文献   

20.
Interpenetrating polymer networks (IPNs) composed of poly(vinyl alcohol) (PVA) and poly(N‐isopropylacrylamide) (PNIPAAm) were prepared by the sequential‐IPN method. The thermal characterization of the IPNs was investigated using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). Depression of the melting temperature (Tm) of the PVA segment in IPNs was observed with increasing PNIPAAm content using DSC. DEA was employed to ascertain the glass‐transition temperature (Tg) of IPNs. From the result of DEA, IPNs exhibited two Tg values, indicating the presence of phase separation in the IPNs. The thermal decomposition of IPNs was investigated using TGA and appeared at near 200°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 881–885, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号